These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 3049933)

  • 1. A study of the role of the hexose monophosphate pathway with respect to fatty acid biosynthesis in sporulation of Saccharomyces cerevisiae.
    Dickinson JR; Hewlins MJ
    J Gen Microbiol; 1988 Feb; 134(2):333-7. PubMed ID: 3049933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 13C NMR analysis of a developmental pathway mutation in Saccharomyces cerevisiae reveals a cell derepressed for succinate dehydrogenase.
    Dickinson JR; Hewlins MJ
    J Gen Microbiol; 1991 May; 137(5):1033-7. PubMed ID: 1678004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetic and biochemical analysis of the role of gluconeogenesis in sporulation of Saccharomyces cerevisiae.
    Dickinson JR; Williams AS
    J Gen Microbiol; 1986 Sep; 132(9):2605-10. PubMed ID: 3540206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C NMR studies of acetate metabolism during sporulation of Saccharomyces cerevisiae.
    Dickinson JR; Dawes IW; Boyd AS; Baxter RL
    Proc Natl Acad Sci U S A; 1983 Oct; 80(19):5847-51. PubMed ID: 6136970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway.
    Dickinson JR; Sobanski MA; Hewlins MJ
    Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():385-91. PubMed ID: 7704269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trehalose metabolism during sporulation in Saccharomyces cerevisiae.
    Ferreira JC; Panek AD
    Biochem Mol Biol Int; 1993 Dec; 31(6):1081-90. PubMed ID: 8193591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal amino acid metabolism in mutants of Saccharomyces cerevisiae affected in the initiation of sporulation.
    Dickinson JR; Ambler RP; Dawes IW
    Eur J Biochem; 1985 Apr; 148(2):405-6. PubMed ID: 3886382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
    Toivari MH; Maaheimo H; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.
    Shin GH; Veen M; Stahl U; Lang C
    Yeast; 2012 Sep; 29(9):371-83. PubMed ID: 22926964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germination of Saccharomyces cerevisiae ascospores without trehalose mobilization as revealed by in vivo 13C nuclear magnetic resonance spectroscopy.
    Donnini C; Puglisi PP; Vecli A; Marmiroli N
    J Bacteriol; 1988 Aug; 170(8):3789-91. PubMed ID: 3042762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute glutathione requirement for sporulation of a yeast Saccharomyces cerevisiae.
    Suizu T; Tsutsumi H; Ohtake Y; Kawado A; Imayasu S; Kimura A; Murata K
    Biochem Biophys Res Commun; 1994 Dec; 205(2):1151-4. PubMed ID: 7802644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GSG1, a yeast gene required for sporulation.
    Kaytor MD; Livingston DM
    Yeast; 1995 Sep; 11(12):1147-55. PubMed ID: 8619313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis.
    Matsufuji Y; Fujimura S; Ito T; Nishizawa M; Miyaji T; Nakagawa J; Ohyama T; Tomizuka N; Nakagawa T
    Yeast; 2008 Nov; 25(11):825-33. PubMed ID: 19061187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cdc30 mutation in Saccharomyces cerevisiae affects phosphoglucose isomerase, the cell cycle and sporulation.
    Dickinson JR; Smith ME; Swanson TR; Williams AS; Wingfield JM
    J Gen Microbiol; 1988 Sep; 134(9):2475-80. PubMed ID: 3076183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The genetic control of cell growth and development in yeast Saccharomyces cerevisiae. Disturbed sporulation in diploids with decreased activity of the Ras/cAMP signal transduction pathway].
    Rakauskaĭte R; Chitavichius D
    Genetika; 2003 Jun; 39(6):739-47. PubMed ID: 12884511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains.
    Heux S; Cadiere A; Dequin S
    FEMS Yeast Res; 2008 Mar; 8(2):217-24. PubMed ID: 18036177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation of sporulation in Saccharomyces cerevisiae. Mutations causing derepressed sporulation and G1 arrest in the cell division cycle.
    Dawes IW; Calvert GR
    J Gen Microbiol; 1984 Mar; 130(3):605-13. PubMed ID: 6374028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Channeling of TCA cycle intermediates in Saccharomyces cerevisiae.
    Ira ; Sonawat HM
    Indian J Biochem Biophys; 1998 Oct; 35(5):260-5. PubMed ID: 10410458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initiation of sporulation in Saccharomyces cerevisiae. Mutations preventing initiation.
    Calvert GR; Dawes IW
    J Gen Microbiol; 1984 Mar; 130(3):615-24. PubMed ID: 6374029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid synthesis by isolated leucoplasts from developing Brassica seeds: role of glycolytic intermediates as the source of carbon and energy.
    Gupta R; Singh R
    Indian J Biochem Biophys; 1996 Dec; 33(6):478-83. PubMed ID: 9219433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.