These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30500014)

  • 1. First-principles study of rocksalt early transition-metal carbides as potential catalysts for Li-O
    Yang Y; Wang Y; Yao M; Wang X; Huang H
    Phys Chem Chem Phys; 2018 Dec; 20(48):30231-30238. PubMed ID: 30500014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First Principles Study of the Structure-Performance Relation of Pristine W
    Zhu L; Wang J; Liu J; Wang R; Lin M; Wang T; Zhen Y; Xu J; Zhao L
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Design of Graphene-Based Active Catalysts for Oxygen Reduction and Evolution Reactions in the Aprotic Li-O2 Battery.
    Kang J; Yu JS; Han B
    J Phys Chem Lett; 2016 Jul; 7(14):2803-8. PubMed ID: 27392527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doped boron nitride surfaces: potential metal free bifunctional catalysts for non-aqueous Li-O
    Chowdhury C; Datta A
    Phys Chem Chem Phys; 2018 Jun; 20(24):16485-16492. PubMed ID: 29882942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolayer germanium monochalcogenides (GeS/GeSe) as cathode catalysts in nonaqueous Li-O
    Ji Y; Dong H; Yang M; Hou T; Li Y
    Phys Chem Chem Phys; 2017 Aug; 19(31):20457-20462. PubMed ID: 28748245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O2 Battery.
    Zhu J; Wang F; Wang B; Wang Y; Liu J; Zhang W; Wen Z
    J Am Chem Soc; 2015 Oct; 137(42):13572-9. PubMed ID: 26436336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst.
    Kim BG; Kim HJ; Back S; Nam KW; Jung Y; Han YK; Choi JW
    Sci Rep; 2014 Feb; 4():4225. PubMed ID: 24573326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Nanostructured Transition Metal Carbide- and Nitride-Based Cathode Electrocatalysts for Li-O
    Karuppasamy K; Prasanna K; Jothi VR; Vikraman D; Hussain S; Hwang JH; Kim HS
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33114076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries.
    Lu YC; Shao-Horn Y
    J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cesium Lead Bromide Perovskite-Based Lithium-Oxygen Batteries.
    Zhou Y; Gu Q; Li Y; Tao L; Tan H; Yin K; Zhou J; Guo S
    Nano Lett; 2021 Jun; 21(11):4861-4867. PubMed ID: 34044536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lewis-Acidic PtIr Multipods Enable High-Performance Li-O
    Zhou Y; Yin K; Gu Q; Tao L; Li Y; Tan H; Zhou J; Zhang W; Li H; Guo S
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26592-26598. PubMed ID: 34719865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascaded orbital-oriented hybridization of intermetallic Pd
    Zhou Y; Gu Q; Yin K; Tao L; Li Y; Tan H; Yang Y; Guo S
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2301439120. PubMed ID: 37307482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.
    Ren X; Wang B; Zhu J; Liu J; Zhang W; Wen Z
    Phys Chem Chem Phys; 2015 Jun; 17(22):14605-12. PubMed ID: 25970821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Catalytic Activity of Co
    Gao R; Shang Z; Zheng L; Wang J; Sun L; Hu Z; Liu X
    Inorg Chem; 2019 Apr; 58(8):4989-4996. PubMed ID: 30788960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Electronegativity as an Activity Descriptor to Screen Oxygen Evolution Reaction Catalysts of Li-O
    Zhao X; Gu F; Wang Y; Peng Z; Liu J
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27166-27175. PubMed ID: 32441914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions.
    Zhou S; Liu N; Wang Z; Zhao J
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22578-22587. PubMed ID: 28621128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering e
    Zhou Y; Gu Q; Yin K; Li Y; Tao L; Tan H; Yang Y; Guo S
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202201416. PubMed ID: 35352866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition-metal monochalcogenide nanowires: highly efficient bi-functional catalysts for the oxygen evolution/reduction reactions.
    Zhang W; Wang J; Zhao L; Wang J; Zhao M
    Nanoscale; 2020 Jun; 12(24):12883-12890. PubMed ID: 32520041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.