BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30500036)

  • 1. Remote homoepitaxy of ZnO microrods across graphene layers.
    Jeong J; Min KA; Shin DH; Yang WS; Yoo J; Lee SW; Hong S; Hong YJ
    Nanoscale; 2018 Dec; 10(48):22970-22980. PubMed ID: 30500036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote epitaxy through graphene enables two-dimensional material-based layer transfer.
    Kim Y; Cruz SS; Lee K; Alawode BO; Choi C; Song Y; Johnson JM; Heidelberger C; Kong W; Choi S; Qiao K; Almansouri I; Fitzgerald EA; Kong J; Kolpak AM; Hwang J; Kim J
    Nature; 2017 Apr; 544(7650):340-343. PubMed ID: 28426001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facet-selective morphology-controlled remote epitaxy of ZnO microcrystals via wet chemical synthesis.
    Choi J; Jin DK; Jeong J; Kang BK; Yang WS; Ali A; Yoo J; Kim MJ; Yi GC; Hong YJ
    Sci Rep; 2021 Nov; 11(1):22697. PubMed ID: 34811457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of 2D-3D Heterointerface on Remote Epitaxial Interaction through Graphene.
    Kim H; Lu K; Liu Y; Kum HS; Kim KS; Qiao K; Bae SH; Lee S; Ji YJ; Kim KH; Paik H; Xie S; Shin H; Choi C; Lee JH; Dong C; Robinson JA; Lee JH; Ahn JH; Yeom GY; Schlom DG; Kim J
    ACS Nano; 2021 Jun; 15(6):10587-10596. PubMed ID: 34081854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Range Orbital Hybridization in Remote Epitaxy: The Nucleation Mechanism of GaN on Different Substrates
    Qu Y; Xu Y; Cao B; Wang Y; Wang J; Shi L; Xu K
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2263-2274. PubMed ID: 34978790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitaxial growth of ZnO layers using nanorods with high crystalline quality.
    Park DJ; Kim DC; Lee JY; Cho HK
    Nanotechnology; 2007 Oct; 18(39):395605. PubMed ID: 21730425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote epitaxial interaction through graphene.
    Chang CS; Kim KS; Park BI; Choi J; Kim H; Jeong J; Barone M; Parker N; Lee S; Zhang X; Lu K; Suh JM; Kim J; Lee D; Han NM; Moon M; Lee YS; Kim DH; Schlom DG; Hong YJ; Kim J
    Sci Adv; 2023 Oct; 9(42):eadj5379. PubMed ID: 37862426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of epitaxial growth of ZnO nanotip arrays by hydrothermal method.
    Venkatachalam S; Hayashi H; Ebina T; Nakamura T; Wakui Y; Nanjo H
    J Colloid Interface Sci; 2013 Apr; 395():64-7. PubMed ID: 23369799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse.
    Biroju RK; Tilak N; Rajender G; Dhara S; Giri PK
    Nanotechnology; 2015 Apr; 26(14):145601. PubMed ID: 25772263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice Transparency of Graphene.
    Chae S; Jang S; Choi WJ; Kim YS; Chang H; Lee TI; Lee JO
    Nano Lett; 2017 Mar; 17(3):1711-1718. PubMed ID: 28182425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride.
    Wang D; Lu Y; Meng J; Zhang X; Yin Z; Gao M; Wang Y; Cheng L; You J; Zhang J
    Nanoscale; 2019 May; 11(19):9310-9318. PubMed ID: 31066419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exceptional Thermochemical Stability of Graphene on N-Polar GaN for Remote Epitaxy.
    Choi J; Jeong J; Zhu X; Kim J; Kang BK; Wang Q; Park BI; Lee S; Kim J; Kim H; Yoo J; Yi GC; Lee DS; Kim J; Hong S; Kim MJ; Hong YJ
    ACS Nano; 2023 Nov; 17(21):21678-21689. PubMed ID: 37843425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect seeded remote epitaxy of GaAs films on graphene.
    Zulqurnain M; Burton OJ; Al-Hada M; Goff LE; Hofmann S; Hirst LC
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35977453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties.
    Biroju RK; Giri PK; Dhara S; Imakita K; Fujii M
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):377-87. PubMed ID: 24367888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermally grown ZnO nanostructures on few-layer graphene sheets.
    Kim YJ; Hadiyawarman ; Yoon A; Kim M; Yi GC; Liu C
    Nanotechnology; 2011 Jun; 22(24):245603. PubMed ID: 21508449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates.
    Molaei R; Bayati MR; Alipour HM; Estrich NA; Narayan J
    J Phys Condens Matter; 2014 Jan; 26(1):015004. PubMed ID: 24275059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Remote Epitaxial Heterointerface by Graphene-Assisted Attenuative Charge Transfer.
    Wang Y; Qu Y; Xu Y; Li D; Lu Z; Li J; Su X; Wang G; Shi L; Zeng X; Wang J; Cao B; Xu K
    ACS Nano; 2023 Feb; 17(4):4023-4033. PubMed ID: 36744849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitaxial Metal Electrodeposition Controlled by Graphene Layer Thickness.
    Wright SC; Brea C; Baxter JS; Saini S; AlsaƧ EP; Yoon SG; Boebinger MG; Hu G; McDowell MT
    ACS Nano; 2024 May; 18(21):13866-13875. PubMed ID: 38751199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarity governs atomic interaction through two-dimensional materials.
    Kong W; Li H; Qiao K; Kim Y; Lee K; Nie Y; Lee D; Osadchy T; Molnar RJ; Gaskill DK; Myers-Ward RL; Daniels KM; Zhang Y; Sundram S; Yu Y; Bae SH; Rajan S; Shao-Horn Y; Cho K; Ougazzaden A; Grossman JC; Kim J
    Nat Mater; 2018 Nov; 17(11):999-1004. PubMed ID: 30297812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organized semiconductor nano-network on graphene.
    Son D; Jin Kim S; Lee S; Bae S; Kim TW; Kang JW; Hyun Lee S
    Nanotechnology; 2017 Apr; 28(14):145602. PubMed ID: 28276339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.