BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30500091)

  • 1. Optical Chirality Sensing with an Auxiliary-Free Earth-Abundant Cobalt Probe.
    De Los Santos ZA; Lynch CC; Wolf C
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1198-1202. PubMed ID: 30500091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Chirality Sensing with a Stereodynamic Aluminum Biphenolate Probe.
    De Los Santos ZA; Joyce LA; Sherer EC; Welch CJ; Wolf C
    J Org Chem; 2019 Apr; 84(8):4639-4645. PubMed ID: 30019902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular dichroism sensing of chiral compounds using an achiral metal complex as probe.
    Irfanoglu B; Wolf C
    Chirality; 2014 Aug; 26(8):379-84. PubMed ID: 24839183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereochemical analysis of chiral amines, diamines, and amino alcohols: Practical chiroptical sensing based on dynamic covalent chemistry.
    Hassan DS; Thanzeel FY; Wolf C
    Chirality; 2020 Apr; 32(4):457-463. PubMed ID: 32027416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality sensing of amines, diamines, amino acids, amino alcohols, and α-hydroxy acids with a single probe.
    Bentley KW; Nam YG; Murphy JM; Wolf C
    J Am Chem Soc; 2013 Dec; 135(48):18052-5. PubMed ID: 24261969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiroptical sensing of unprotected amino acids, hydroxy acids, amino alcohols, amines and carboxylic acids with metal salts.
    Lynch CC; De Los Santos ZA; Wolf C
    Chem Commun (Camb); 2019 May; 55(44):6297-6300. PubMed ID: 31089587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chirality sensing with stereodynamic copper(I) complexes.
    De Los Santos ZA; Legaux NM; Wolf C
    Chirality; 2017 Nov; 29(11):663-669. PubMed ID: 28902429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Chirality Sensing with Pyridoxal-5'-phosphate.
    Pilicer SL; Bakhshi PR; Bentley KW; Wolf C
    J Am Chem Soc; 2017 Feb; 139(5):1758-1761. PubMed ID: 28128945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Chirality and Concentration Sensing of Alcohols, Diols, Hydroxy Acids, Amines and Amino Alcohols using Chlorophosphite Sensors in a Relay Assay.
    Thanzeel FY; Balaraman K; Wolf C
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21382-21386. PubMed ID: 32762103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An exciton-coupled circular dichroism protocol for the determination of identity, chirality, and enantiomeric excess of chiral secondary alcohols.
    You L; Pescitelli G; Anslyn EV; Di Bari L
    J Am Chem Soc; 2012 Apr; 134(16):7117-25. PubMed ID: 22439590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective sensing of chiral amino alcohols with a stereodynamic arylacetylene-based probe.
    Iwaniuk DP; Bentley KW; Wolf C
    Chirality; 2012 Jul; 24(7):584-9. PubMed ID: 22628254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid organocatalytic chirality analysis of amines, amino acids, alcohols, amino alcohols and diols with achiral iso(thio)cyanate probes.
    Nelson E; Formen JSSK; Wolf C
    Chem Sci; 2021 Jul; 12(25):8784-8790. PubMed ID: 34257878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chirality sensing with stereodynamic biphenolate zinc complexes.
    Bentley KW; de Los Santos ZA; Weiss MJ; Wolf C
    Chirality; 2015 Oct; 27(10):700-7. PubMed ID: 26299373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Terpene and Terpenoid Sensing: Chiral Recognition, Determination of Enantiomeric Composition and Total Concentration Analysis with Late Transition Metal Complexes.
    De Los Santos ZA; Wolf C
    J Am Chem Soc; 2020 Mar; 142(9):4121-4125. PubMed ID: 32077692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral auxiliary and induced chiroptical sensing with 5d/4f lanthanide-organic macrocycles.
    Zhu QY; Zhou LP; Cai LX; Li XZ; Zhou J; Sun QF
    Chem Commun (Camb); 2020 Mar; 56(19):2861-2864. PubMed ID: 32031550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing of the concentration and enantiomeric excess of chiral compounds with tropos ligand derived metal complexes.
    Zhang P; Wolf C
    Chem Commun (Camb); 2013 Aug; 49(62):7010-2. PubMed ID: 23811961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output.
    Wolf C; Bentley KW
    Chem Soc Rev; 2013 Jun; 42(12):5408-24. PubMed ID: 23482984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergent chiroptical properties in supramolecular and plasmonic assemblies.
    Nizar NSS; Sujith M; Swathi K; Sissa C; Painelli A; Thomas KG
    Chem Soc Rev; 2021 Oct; 50(20):11208-11226. PubMed ID: 34522920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the scope of redox-triggered chiroptical switches: syntheses, X-ray structures, and circular dichroism of cobalt and nickel complexes of N,N-bis(arylmethyl)methionine derivatives.
    Das D; Dai Z; Holmes A; Canary JW
    Chirality; 2008 Mar; 20(3-4):585-91. PubMed ID: 18196593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.