BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30500158)

  • 1. Understanding the Role of Aggregation in the Broad Absorption Bands of Eumelanin.
    Ju KY; Fischer MC; Warren WS
    ACS Nano; 2018 Dec; 12(12):12050-12061. PubMed ID: 30500158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free Energy and Stacking of Eumelanin Nanoaggregates.
    Soltani S; Sowlati-Hashjin S; Tetsassi Feugmo CG; Karttunen M
    J Phys Chem B; 2022 Mar; 126(8):1805-1818. PubMed ID: 35175060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative relaxation of Sepia eumelanin is affected by aggregation.
    Nofsinger JB; Simon JD
    Photochem Photobiol; 2001 Jul; 74(1):31-7. PubMed ID: 11460534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin.
    Chen CT; Chuang C; Cao J; Ball V; Ruch D; Buehler MJ
    Nat Commun; 2014 May; 5():3859. PubMed ID: 24848640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical models of eumelanin protomolecules and their optical properties.
    Meng S; Kaxiras E
    Biophys J; 2008 Mar; 94(6):2095-105. PubMed ID: 17993493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eumelanin buildup on the nanoscale: aggregate growth/assembly and visible absorption development in biomimetic 5,6-dihydroxyindole polymerization.
    Arzillo M; Mangiapia G; Pezzella A; Heenan RK; Radulescu A; Paduano L; d'Ischia M
    Biomacromolecules; 2012 Aug; 13(8):2379-90. PubMed ID: 22651227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural model of eumelanin.
    Kaxiras E; Tsolakidis A; Zonios G; Meng S
    Phys Rev Lett; 2006 Nov; 97(21):218102. PubMed ID: 17155775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human serum albumin and other proteins as templating agents for the synthesis of nanosized dopamine-eumelanin.
    Chassepot A; Ball V
    J Colloid Interface Sci; 2014 Jan; 414():97-102. PubMed ID: 24231090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design.
    Chen CT; Ball V; de Almeida Gracio JJ; Singh MK; Toniazzo V; Ruch D; Buehler MJ
    ACS Nano; 2013 Feb; 7(2):1524-32. PubMed ID: 23320483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control.
    Micillo R; Panzella L; Iacomino M; Prampolini G; Cacelli I; Ferretti A; Crescenzi O; Koike K; Napolitano A; d'Ischia M
    Sci Rep; 2017 Feb; 7():41532. PubMed ID: 28150707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast excited state dynamics of 5,6-dihydroxyindole, a key eumelanin building block: nonradiative decay mechanism.
    Gauden M; Pezzella A; Panzella L; Napolitano A; d'Ischia M; Sundström V
    J Phys Chem B; 2009 Sep; 113(37):12575-80. PubMed ID: 19691267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stacking and redox state on optical absorption spectra of melanins -- comparison of theoretical and experimental results.
    Stark KB; Gallas JM; Zajac GW; Golab JT; Gidanian S; McIntire T; Farmer PJ
    J Phys Chem B; 2005 Feb; 109(5):1970-7. PubMed ID: 16851181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling eumelanin "black chromophore": visible absorption changes as signatures of oxidation state- and aggregation-dependent dynamic interactions in a model water-soluble 5,6-dihydroxyindole polymer.
    Pezzella A; Iadonisi A; Valerio S; Panzella L; Napolitano A; Adinolfi M; d'Ischia M
    J Am Chem Soc; 2009 Oct; 131(42):15270-5. PubMed ID: 19919162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clue to Understanding the Janus Behavior of Eumelanin: Investigating the Relationship between Hierarchical Assembly Structure of Eumelanin and Its Photophysical Properties.
    Ju KY; Kang J; Chang JH; Lee JK
    Biomacromolecules; 2016 Sep; 17(9):2860-72. PubMed ID: 27459629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of visible chromophore development in the pulse radiolysis oxidation of 5,6-dihydroxyindole-2-carboxylic acid oligomers: DFT investigation and implications for eumelanin absorption properties.
    Pezzella A; Panzella L; Crescenzi O; Napolitano A; Navaratnam S; Edge R; Land EJ; Barone V; d'Ischia M
    J Org Chem; 2009 May; 74(10):3727-34. PubMed ID: 19385623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved and steady-state fluorescence spectroscopy of eumelanin and indolic polymers.
    Nighswander-Rempel SP; Mahadevan IB; Rubinsztein-Dunlop H; Meredith P
    Photochem Photobiol; 2007; 83(6):1449-54. PubMed ID: 18028220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared and water sorption studies of the hydration structure and mechanism in natural and synthetic melanin.
    Bridelli MG; Crippa PR
    J Phys Chem B; 2010 Jul; 114(29):9381-90. PubMed ID: 20604565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy.
    d'Ischia M; Napolitano A; Ball V; Chen CT; Buehler MJ
    Acc Chem Res; 2014 Dec; 47(12):3541-50. PubMed ID: 25340503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific in situ synthesis of eumelanin nanoparticles by an enzymatic autodeposition-like process.
    Strube OI; Büngeler A; Bremser W
    Biomacromolecules; 2015 May; 16(5):1608-13. PubMed ID: 25826232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial pheomelanin nanoparticles and their photo-sensitization properties.
    Pyo J; Ju KY; Lee JK
    J Photochem Photobiol B; 2016 Jul; 160():330-5. PubMed ID: 27173400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.