BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30500421)

  • 1. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis and survival in response to reactive oxygen and nitrogen species.
    Mehta M; Singh A
    Free Radic Biol Med; 2019 Feb; 131():50-58. PubMed ID: 30500421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response.
    Singh A; Crossman DK; Mai D; Guidry L; Voskuil MI; Renfrow MB; Steyn AJ
    PLoS Pathog; 2009 Aug; 5(8):e1000545. PubMed ID: 19680450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival.
    Singh A; Guidry L; Narasimhulu KV; Mai D; Trombley J; Redding KE; Giles GI; Lancaster JR; Steyn AJ
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11562-7. PubMed ID: 17609386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium tuberculosis WhiB3: a novel iron-sulfur cluster protein that regulates redox homeostasis and virulence.
    Saini V; Farhana A; Steyn AJ
    Antioxid Redox Signal; 2012 Apr; 16(7):687-97. PubMed ID: 22010944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterium tuberculosis WhiB3 Responds to Vacuolar pH-induced Changes in Mycothiol Redox Potential to Modulate Phagosomal Maturation and Virulence.
    Mehta M; Rajmani RS; Singh A
    J Biol Chem; 2016 Feb; 291(6):2888-903. PubMed ID: 26637353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection.
    Cumming BM; Rahman MA; Lamprecht DA; Rohde KH; Saini V; Adamson JH; Russell DG; Steyn AJC
    PLoS Pathog; 2017 May; 13(5):e1006389. PubMed ID: 28542477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reengineering redox sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection.
    Bhaskar A; Chawla M; Mehta M; Parikh P; Chandra P; Bhave D; Kumar D; Carroll KS; Singh A
    PLoS Pathog; 2014 Jan; 10(1):e1003902. PubMed ID: 24497832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide.
    Tyagi P; Dharmaraja AT; Bhaskar A; Chakrapani H; Singh A
    Free Radic Biol Med; 2015 Jul; 84():344-354. PubMed ID: 25819161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering the roles of
    Chen Y-C; Yang X; Wang N; Sampson NS
    mSphere; 2024 Apr; 9(4):e0006124. PubMed ID: 38564709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhoPR Positively Regulates
    Feng L; Chen S; Hu Y
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of DNA binding by the WhiB-like transcription factor WhiB3 in Mycobacterium tuberculosis.
    Wan T; Horová M; Khetrapal V; Li S; Jones C; Schacht A; Sun X; Zhang L
    J Biol Chem; 2023 Jun; 299(6):104777. PubMed ID: 37142222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis.
    Saini V; Cumming BM; Guidry L; Lamprecht DA; Adamson JH; Reddy VP; Chinta KC; Mazorodze JH; Glasgow JN; Richard-Greenblatt M; Gomez-Velasco A; Bach H; Av-Gay Y; Eoh H; Rhee K; Steyn AJC
    Cell Rep; 2016 Jan; 14(3):572-585. PubMed ID: 26774486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox homeostasis in Mycobacterium tuberculosis is modulated by a novel actinomycete-specific transcription factor.
    Khan MZ; Singha B; Ali MF; Taunk K; Rapole S; Gourinath S; Nandicoori VK
    EMBO J; 2021 Jul; 40(14):e106111. PubMed ID: 34018220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox biology of tuberculosis pathogenesis.
    Trivedi A; Singh N; Bhat SA; Gupta P; Kumar A
    Adv Microb Physiol; 2012; 60():263-324. PubMed ID: 22633061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Mycobacterium tuberculosis whiB3 in the mouse lung and macrophages.
    Banaiee N; Jacobs WR; Ernst JD
    Infect Immun; 2006 Nov; 74(11):6449-57. PubMed ID: 16923787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox homeostasis in mycobacteria: the key to tuberculosis control?
    Kumar A; Farhana A; Guidry L; Saini V; Hondalus M; Steyn AJ
    Expert Rev Mol Med; 2011 Dec; 13():e39. PubMed ID: 22172201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression.
    Cunningham-Bussel A; Zhang T; Nathan CF
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):E4256-65. PubMed ID: 24145454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacterium tuberculosis SufR responds to nitric oxide via its 4Fe-4S cluster and regulates Fe-S cluster biogenesis for persistence in mice.
    Anand K; Tripathi A; Shukla K; Malhotra N; Jamithireddy AK; Jha RK; Chaudhury SN; Rajmani RS; Ramesh A; Nagaraja V; Gopal B; Nagaraju G; Narain Seshayee AS; Singh A
    Redox Biol; 2021 Oct; 46():102062. PubMed ID: 34392160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo.
    Chawla M; Parikh P; Saxena A; Munshi M; Mehta M; Mai D; Srivastava AK; Narasimhulu KV; Redding KE; Vashi N; Kumar D; Steyn AJ; Singh A
    Mol Microbiol; 2012 Sep; 85(6):1148-65. PubMed ID: 22780904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of Mycobacterium tuberculosis to reactive oxygen and nitrogen intermediates.
    Garbe TR; Hibler NS; Deretic V
    Mol Med; 1996 Jan; 2(1):134-42. PubMed ID: 8900541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.