These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30500421)

  • 41. Hypoxia inducible factors as mediators of reactive oxygen/nitrogen species homeostasis in physiological normoxia.
    Stuart JA; Aibueku O; Bagshaw O; Moradi F
    Med Hypotheses; 2019 Aug; 129():109249. PubMed ID: 31371070
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide.
    Darwin KH; Ehrt S; Gutierrez-Ramos JC; Weich N; Nathan CF
    Science; 2003 Dec; 302(5652):1963-6. PubMed ID: 14671303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Truncated Hemoglobin O Carries an Autokinase Activity and Facilitates Adaptation of
    Hade MD; Sethi D; Datta H; Singh S; Thakur N; Chhaya A; Dikshit KL
    Antioxid Redox Signal; 2020 Feb; 32(6):351-362. PubMed ID: 31218881
    [No Abstract]   [Full Text] [Related]  

  • 44.
    Afriyie-Asante A; Dabla A; Dagenais A; Berton S; Smyth R; Sun J
    Front Immunol; 2021; 12():742370. PubMed ID: 34745115
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach.
    Bose T; Das C; Dutta A; Mahamkali V; Sadhu S; Mande SS
    BMC Genomics; 2018 Jul; 19(1):555. PubMed ID: 30053801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of Hypoxia on Drug Resistance and Growth Characteristics of Mycobacterium tuberculosis Clinical Isolates.
    Liu Z; Gao Y; Yang H; Bao H; Qin L; Zhu C; Chen Y; Hu Z
    PLoS One; 2016; 11(11):e0166052. PubMed ID: 27835653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease.
    Ushio-Fukai M; Ash D; Nagarkoti S; Belin de Chantemèle EJ; Fulton DJR; Fukai T
    Antioxid Redox Signal; 2021 Jun; 34(16):1319-1354. PubMed ID: 33899493
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reductive Stress: New Insights in Physiology and Drug Tolerance of
    Mavi PS; Singh S; Kumar A
    Antioxid Redox Signal; 2020 Jun; 32(18):1348-1366. PubMed ID: 31621379
    [No Abstract]   [Full Text] [Related]  

  • 50. The stress-response factor SigH modulates the interaction between Mycobacterium tuberculosis and host phagocytes.
    Dutta NK; Mehra S; Martinez AN; Alvarez X; Renner NA; Morici LA; Pahar B; Maclean AG; Lackner AA; Kaushal D
    PLoS One; 2012; 7(1):e28958. PubMed ID: 22235255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite.
    Lee WL; Gold B; Darby C; Brot N; Jiang X; de Carvalho LP; Wellner D; St John G; Jacobs WR; Nathan C
    Mol Microbiol; 2009 Feb; 71(3):583-93. PubMed ID: 19040639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chasing stress signals - Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea.
    Marschall R; Schumacher J; Siegmund U; Tudzynski P
    Fungal Genet Biol; 2016 May; 90():12-22. PubMed ID: 26988904
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells.
    Fernández-Puente E; Palomero J
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639217
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv.
    Alam MS; Garg SK; Agrawal P
    FEBS J; 2009 Jan; 276(1):76-93. PubMed ID: 19016840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Redox control of chondrocyte differentiation and chondrogenesis.
    Bai Y; Gong X; Dou C; Cao Z; Dong S
    Free Radic Biol Med; 2019 Feb; 132():83-89. PubMed ID: 30394290
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitrogen Regulator GlnR Controls Redox Sensing and Lipids Anabolism by Directly Activating the
    You D; Xu Y; Yin BC; Ye BC
    Front Microbiol; 2019; 10():74. PubMed ID: 30761112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural insights into the functional divergence of WhiB-like proteins in Mycobacterium tuberculosis.
    Wan T; Horová M; Beltran DG; Li S; Wong HX; Zhang LM
    Mol Cell; 2021 Jul; 81(14):2887-2900.e5. PubMed ID: 34171298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of Ergothioneine in Microbial Physiology and Pathogenesis.
    Cumming BM; Chinta KC; Reddy VP; Steyn AJC
    Antioxid Redox Signal; 2018 Feb; 28(6):431-444. PubMed ID: 28791878
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Reactive nitrogen and oxygen species metabolism in rat heart mitochondria upon administration of NO donor in vivo].
    Akopova OV; Korkach IuP; Kotsiuruba AV; Kolchyns'ka LI; Sagach VF
    Fiziol Zh (1994); 2012; 58(2):3-15. PubMed ID: 22873047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Iron homeostasis in Mycobacterium tuberculosis is essential for persistence.
    Pandey M; Talwar S; Bose S; Pandey AK
    Sci Rep; 2018 Nov; 8(1):17359. PubMed ID: 30478257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.