These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30500421)

  • 61. Iron homeostasis in Mycobacterium tuberculosis is essential for persistence.
    Pandey M; Talwar S; Bose S; Pandey AK
    Sci Rep; 2018 Nov; 8(1):17359. PubMed ID: 30478257
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species.
    Panday S; Talreja R; Kavdia M
    Microvasc Res; 2020 Sep; 131():104010. PubMed ID: 32335268
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mycobacterium tuberculosis acyl carrier protein inhibits macrophage apoptotic death by modulating the reactive oxygen species/c-Jun N-terminal kinase pathway.
    Paik S; Choi S; Lee KI; Back YW; Son YJ; Jo EK; Kim HJ
    Microbes Infect; 2019; 21(1):40-49. PubMed ID: 29981934
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis.
    Defelipe LA; Do Porto DF; Pereira Ramos PI; Nicolás MF; Sosa E; Radusky L; Lanzarotti E; Turjanski AG; Marti MA
    Tuberculosis (Edinb); 2016 Mar; 97():181-92. PubMed ID: 26791267
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Direct measurement of oxidative and nitrosative stress dynamics in Salmonella inside macrophages.
    van der Heijden J; Bosman ES; Reynolds LA; Finlay BB
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):560-5. PubMed ID: 25548165
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrochemical monitoring of reactive oxygen/nitrogen species and redox balance in living cells.
    Malferrari M; Becconi M; Rapino S
    Anal Bioanal Chem; 2019 Jul; 411(19):4365-4374. PubMed ID: 31011787
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Imaging the NADH:NAD
    Bhat SA; Iqbal IK; Kumar A
    Front Cell Infect Microbiol; 2016; 6():145. PubMed ID: 27878107
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
    Cobley JN; McHardy H; Morton JP; Nikolaidis MG; Close GL
    Free Radic Biol Med; 2015 Jul; 84():65-76. PubMed ID: 25841784
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mycobacterial genes essential for the pathogen's survival in the host.
    Ehrt S; Rhee K; Schnappinger D
    Immunol Rev; 2015 Mar; 264(1):319-26. PubMed ID: 25703569
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses.
    Zielonka J; Zielonka M; Sikora A; Adamus J; Joseph J; Hardy M; Ouari O; Dranka BP; Kalyanaraman B
    J Biol Chem; 2012 Jan; 287(5):2984-95. PubMed ID: 22139901
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reduced susceptibility of clinical strains of Mycobacterium tuberculosis to reactive nitrogen species promotes survival in activated macrophages.
    Idh J; Andersson B; Lerm M; Raffetseder J; Eklund D; Woksepp H; Werngren J; Mansjö M; Sundqvist T; Stendahl O; Schön T
    PLoS One; 2017; 12(7):e0181221. PubMed ID: 28704501
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of protease inhibitor 9 in survival and replication of Mycobacterium tuberculosis in mononuclear phagocytes from HIV-1-infected patients.
    Toossi Z; Wu M; Liu S; Hirsch CS; Walrath J; van Ham M; Silver RF
    AIDS; 2014 Mar; 28(5):679-87. PubMed ID: 24445365
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Peroxynitrite contributes to arsenic-induced PARP-1 inhibition through ROS/RNS generation.
    Zhou X; Ding X; Shen J; Yang D; Hudson LG; Liu KJ
    Toxicol Appl Pharmacol; 2019 Sep; 378():114602. PubMed ID: 31152818
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electrochemical Monitoring of ROS/RNS Homeostasis Within Individual Phagolysosomes Inside Single Macrophages.
    Zhang XW; Oleinick A; Jiang H; Liao QL; Qiu QF; Svir I; Liu YL; Amatore C; Huang WH
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7753-7756. PubMed ID: 30969456
    [TBL] [Abstract][Full Text] [Related]  

  • 75. RegX3 Activates
    Mahatha AC; Mal S; Majumder D; Saha S; Ghosh A; Basu J; Kundu M
    Front Microbiol; 2020; 11():572433. PubMed ID: 33042081
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Mycobacterium tuberculosis Clp gene regulator is required for in vitro reactivation from hypoxia-induced dormancy.
    McGillivray A; Golden NA; Kaushal D
    J Biol Chem; 2015 Jan; 290(4):2351-67. PubMed ID: 25422323
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Zinc limitation triggers anticipatory adaptations in Mycobacterium tuberculosis.
    Dow A; Sule P; O'Donnell TJ; Burger A; Mattila JT; Antonio B; Vergara K; Marcantonio E; Adams LG; James N; Williams PG; Cirillo JD; Prisic S
    PLoS Pathog; 2021 May; 17(5):e1009570. PubMed ID: 33989345
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis.
    Miller JL; Velmurugan K; Cowan MJ; Briken V
    PLoS Pathog; 2010 Apr; 6(4):e1000864. PubMed ID: 20421951
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species.
    Lushchak OV; Piroddi M; Galli F; Lushchak VI
    Redox Rep; 2014 Jan; 19(1):8-15. PubMed ID: 24266943
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The mechanism of redox sensing in Mycobacterium tuberculosis.
    Bhat SA; Singh N; Trivedi A; Kansal P; Gupta P; Kumar A
    Free Radic Biol Med; 2012 Oct; 53(8):1625-41. PubMed ID: 22921590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.