These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30500598)

  • 21. Estimating the Basic Reproductive Number (R0) for African Swine Fever Virus (ASFV) Transmission between Pig Herds in Uganda.
    Barongo MB; Ståhl K; Bett B; Bishop RP; Fèvre EM; Aliro T; Okoth E; Masembe C; Knobel D; Ssematimba A
    PLoS One; 2015; 10(5):e0125842. PubMed ID: 25938429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The basic reproduction number, R
    Neal P; Theparod T
    Math Biosci; 2019 Sep; 315():108224. PubMed ID: 31276681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epidemic models with heterogeneous mixing and treatment.
    Brauer F
    Bull Math Biol; 2008 Oct; 70(7):1869-85. PubMed ID: 18663538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The basic reproduction number of vector-borne plant virus epidemics.
    Van den Bosch F; Jeger MJ
    Virus Res; 2017 Sep; 241():196-202. PubMed ID: 28642061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The basic reproduction number and prediction of the epidemic size of the novel coronavirus (COVID-19) in Shahroud, Iran.
    Khosravi A; Chaman R; Rohani-Rasaf M; Zare F; Mehravaran S; Emamian MH
    Epidemiol Infect; 2020 Jun; 148():e115. PubMed ID: 32517845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimate of the Basic Reproduction Number for COVID-19: A Systematic Review and Meta-analysis.
    Alimohamadi Y; Taghdir M; Sepandi M
    J Prev Med Public Health; 2020 May; 53(3):151-157. PubMed ID: 32498136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On a new perspective of the basic reproduction number in heterogeneous environments.
    Inaba H
    J Math Biol; 2012 Aug; 65(2):309-48. PubMed ID: 21842424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tracing day-zero and forecasting the COVID-19 outbreak in Lombardy, Italy: A compartmental modelling and numerical optimization approach.
    Russo L; Anastassopoulou C; Tsakris A; Bifulco GN; Campana EF; Toraldo G; Siettos C
    PLoS One; 2020; 15(10):e0240649. PubMed ID: 33125393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The basic reproduction number obtained from Jacobian and next generation matrices - A case study of dengue transmission modelling.
    Yang HM
    Biosystems; 2014 Dec; 126():52-75. PubMed ID: 25305542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disease invasion risk in a growing population.
    Yuan S; van den Driessche P; Willeboordse FH; Shuai Z; Ma J
    J Math Biol; 2016 Sep; 73(3):665-81. PubMed ID: 26794321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contact rate calculation for a basic epidemic model.
    Rhodes CJ; Anderson RM
    Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The construction of next-generation matrices for compartmental epidemic models.
    Diekmann O; Heesterbeek JA; Roberts MG
    J R Soc Interface; 2010 Jun; 7(47):873-85. PubMed ID: 19892718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A theta-scheme approximation of basic reproduction number for an age-structured epidemic system in a finite horizon.
    Guo WJ; Ye M; Li XN; Meyer-Baese A; Zhang QM
    Math Biosci Eng; 2019 May; 16(5):4107-4121. PubMed ID: 31499653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The COVID-19 epidemic, its mortality, and the role of non-pharmaceutical interventions.
    Hens N; Vranck P; Molenberghs G
    Eur Heart J Acute Cardiovasc Care; 2020 Apr; 9(3):204-208. PubMed ID: 32352314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global stability of the steady states of an epidemic model incorporating intervention strategies.
    Kang Y; Wang W; Cai Y
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1071-1089. PubMed ID: 29161851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Threshold dynamics of a time periodic and two--group epidemic model with distributed delay.
    Zhao L; Wang ZC; Zhang L
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1535-1563. PubMed ID: 29161875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse.
    Ren S
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1337-1360. PubMed ID: 29161864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of discontinuous treatments on disease dynamics in an SIR epidemic model.
    Guo Z; Huang L; Zou X
    Math Biosci Eng; 2012 Jan; 9(1):97-110. PubMed ID: 22229398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the time to reach a critical number of infections in epidemic models with infective and susceptible immigrants.
    Almaraz E; Gómez-Corral A; Rodríguez-Bernal MT
    Biosystems; 2016 Jun; 144():68-77. PubMed ID: 27068519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications of occupancy urn models to epidemiology.
    Hernández-Suárez CM; Mendoza-Cano O
    Math Biosci Eng; 2009 Jul; 6(3):509-20. PubMed ID: 19566123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.