These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 30500607)
1. Mesohaline conditions represent the threshold for oxidative stress, cell death and toxin release in the cyanobacterium Microcystis aeruginosa. Ross C; Warhurst BC; Brown A; Huff C; Ochrietor JD Aquat Toxicol; 2019 Jan; 206():203-211. PubMed ID: 30500607 [TBL] [Abstract][Full Text] [Related]
2. Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl. Du Y; Ye J; Wu L; Yang C; Wang L; Hu X Environ Sci Pollut Res Int; 2017 Mar; 24(8):7752-7763. PubMed ID: 28127689 [TBL] [Abstract][Full Text] [Related]
3. Growth, toxin production, active oxygen species and catalase activity of Microcystis aeruginosa (Cyanophyceae) exposed to temperature stress. Giannuzzi L; Krock B; Minaglia MC; Rosso L; Houghton C; Sedan D; Malanga G; Espinosa M; Andrinolo D; Hernando M Comp Biochem Physiol C Toxicol Pharmacol; 2016 Nov; 189():22-30. PubMed ID: 27449270 [TBL] [Abstract][Full Text] [Related]
4. Physiological and Metabolic Responses of Freshwater and Brackish-Water Strains of Microcystis aeruginosa Acclimated to a Salinity Gradient: Insight into Salt Tolerance. Georges des Aulnois M; Roux P; Caruana A; Réveillon D; Briand E; Hervé F; Savar V; Bormans M; Amzil Z Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444201 [TBL] [Abstract][Full Text] [Related]
5. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. Chen L; Mao F; Kirumba GC; Jiang C; Manefield M; He Y Ecotoxicol Environ Saf; 2015 Dec; 122():126-35. PubMed ID: 26232039 [TBL] [Abstract][Full Text] [Related]
6. Effect of Zinc on Perez JL; Chu T Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 32019107 [TBL] [Abstract][Full Text] [Related]
7. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa. Chen L; Gin KY; He Y Environ Sci Pollut Res Int; 2016 Feb; 23(4):3586-95. PubMed ID: 26490939 [TBL] [Abstract][Full Text] [Related]
8. Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Ross C; Santiago-Vázquez L; Paul V Aquat Toxicol; 2006 Jun; 78(1):66-73. PubMed ID: 16580745 [TBL] [Abstract][Full Text] [Related]
9. Biometric and physiological responses of Egeria densa Planch. cultivated with toxic and non-toxic strains of Microcystis. Amorim CA; Ulisses C; Moura AN Aquat Toxicol; 2017 Oct; 191():201-208. PubMed ID: 28846860 [TBL] [Abstract][Full Text] [Related]
10. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins. Shen F; Wang L; Zhou Q; Huang X Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395 [TBL] [Abstract][Full Text] [Related]
11. Blooming of Microcystis aeruginosa in the reservoir of the reclaimed land and discharge of microcystins to Isahaya Bay (Japan). Umehara A; Tsutsumi H; Takahashi T Environ Sci Pollut Res Int; 2012 Sep; 19(8):3257-67. PubMed ID: 22374190 [TBL] [Abstract][Full Text] [Related]
12. Microcystin-LR (MC-LR) inhibits green algae growth by regulating antioxidant and photosynthetic systems. Li Z; Zheng Y; Ma H; Cui F Harmful Algae; 2024 Apr; 134():102623. PubMed ID: 38705613 [TBL] [Abstract][Full Text] [Related]
13. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different phosphorus levels. Yang M; Wang X Sci Total Environ; 2019 Mar; 658():439-448. PubMed ID: 30579201 [TBL] [Abstract][Full Text] [Related]
14. Biomarkers involved in energy metabolism and oxidative stress response in the liver of Goodea gracilis Hubbs and Turner, 1939 exposed to the microcystin-producing Microcystis aeruginosa LB85 strain. Olivares Rubio HF; Martínez-Torres ML; Nájera-Martínez M; Dzul-Caamal R; Domínguez-López ML; García-Latorre E; Vega-López A Environ Toxicol; 2015 Sep; 30(10):1113-24. PubMed ID: 24639371 [TBL] [Abstract][Full Text] [Related]
15. Cellular and aqueous microcystin-LR following laboratory exposures of Microcystis aeruginosa to copper algaecides. Iwinski KJ; Calomeni AJ; Geer TD; Rodgers JH Chemosphere; 2016 Mar; 147():74-81. PubMed ID: 26761600 [TBL] [Abstract][Full Text] [Related]
16. Effects of nonylphenol on the growth and microcystin production of Microcystis strains. Wang J; Xie P; Guo N Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412 [TBL] [Abstract][Full Text] [Related]
17. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions. Chia MA; Cordeiro-Araújo MK; Lorenzi AS; Bittencourt-Oliveira MDC Ecotoxicol Environ Saf; 2017 Aug; 142():189-199. PubMed ID: 28411514 [TBL] [Abstract][Full Text] [Related]
18. Salt-alkalization may potentially promote Microcystis aeruginosa blooms and the production of microcystin-LR. Yu J; Zhu H; Shutes B; Wang X Environ Pollut; 2022 May; 301():118971. PubMed ID: 35167928 [TBL] [Abstract][Full Text] [Related]
19. Effect of linoleic acid sustained-release microspheres on Microcystis aeruginosa antioxidant enzymes activity and microcystins production and release. Ni L; Jie X; Wang P; Li S; Wang G; Li Y; Li Y; Acharya K Chemosphere; 2015 Feb; 121():110-6. PubMed ID: 25496741 [TBL] [Abstract][Full Text] [Related]
20. Effects of d-menthol stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905. Hu X; Liu Y; Zeng G; Xu W; Hu X; Zhu Z; Zhang P; Wang Y Chemosphere; 2014 Oct; 113():30-5. PubMed ID: 25065786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]