These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30500613)

  • 1. Inhibitory Thoracic Interneurons are not Essential to Generate the Rostro-caudal Gradient of the Thoracic Inspiratory Motor Activity in Neonatal Rat.
    Oka A; Iizuka M; Onimaru H; Izumizaki M
    Neuroscience; 2019 Jan; 397():1-11. PubMed ID: 30500613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of respiration-related neuronal activity in the thoracic spinal cord of the neonatal rat: An optical imaging study.
    Iizuka M; Onimaru H; Izumizaki M
    Neuroscience; 2016 Feb; 315():217-27. PubMed ID: 26704634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat.
    Iizuka M
    J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycine and GABAA receptors suppressively regulate the inspiratory-related calcium rise in the thoracic inspiratory cells of the neonatal rat.
    Mikami Y; Iizuka M; Onimaru H; Izumizaki M
    J Physiol Sci; 2022 Oct; 72(1):24. PubMed ID: 36192688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat.
    Dutschmann M; Paton JF
    J Physiol; 2002 Sep; 543(Pt 2):643-53. PubMed ID: 12205196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercostal expiratory activity in an in vitro brainstem-spinal cord-rib preparation from the neonatal rat.
    Iizuka M
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):293-302. PubMed ID: 10517820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rostrocaudal distribution of spinal respiratory motor activity in an in vitro neonatal rat preparation.
    Iizuka M
    Neurosci Res; 2004 Nov; 50(3):263-9. PubMed ID: 15488289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control.
    Bongianni F; Mutolo D; Nardone F; Pantaleo T
    Brain Res; 2006 May; 1090(1):134-45. PubMed ID: 16630584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bicuculline and strychnine suppress the mesencephalic locomotor region-induced inhibition of group III muscle afferent input to the dorsal horn.
    Degtyarenko AM; Kaufman MP
    Neuroscience; 2003; 118(3):779-88. PubMed ID: 12710985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylxanthines do not affect rhythmogenic preBötC inspiratory network activity but impair bursting of preBötC-driven motoneurons.
    Panaitescu B; Kuribayashi J; Ruangkittisakul A; Leung V; Iizuka M; Ballanyi K
    Neuroscience; 2013; 255():158-76. PubMed ID: 24120555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1997 Mar; 77(3):1155-70. PubMed ID: 9084588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurophysiol; 1996 Feb; 75(2):640-7. PubMed ID: 8714641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission.
    Shao XM; Feldman JL
    J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory activity in brainstem of fetal mice lacking glutamate decarboxylase 65/67 and vesicular GABA transporter.
    Fujii M; Arata A; Kanbara-Kume N; Saito K; Yanagawa Y; Obata K
    Neuroscience; 2007 May; 146(3):1044-52. PubMed ID: 17418495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R; Soffe SR
    J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling.
    Hagevik A; McClellan AD
    J Neurophysiol; 1994 Oct; 72(4):1810-29. PubMed ID: 7823103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord.
    Tresch MC; Kiehn O
    J Neurophysiol; 1999 Dec; 82(6):3563-74. PubMed ID: 10601482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord.
    Wenner P; O'Donovan MJ
    J Neurophysiol; 2001 Sep; 86(3):1481-98. PubMed ID: 11535692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.