BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 30500713)

  • 21. Rice methylmercury exposure and mitigation: a comprehensive review.
    Rothenberg SE; Windham-Myers L; Creswell JE
    Environ Res; 2014 Aug; 133():407-23. PubMed ID: 24972509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hidden demethylation pathway removes mercury from rice plants and mitigates mercury flux to food chains.
    Tang W; Bai X; Zhou Y; Sonne C; Wu M; Lam SS; Hintelmann H; Mitchell CPJ; Johs A; Gu B; Nunes L; Liu C; Feng N; Yang S; Rinklebe J; Lin Y; Chen L; Zhang Y; Yang Y; Wang J; Li S; Wu Q; Ok YS; Xu D; Li H; Zhang XX; Ren H; Jiang G; Chai Z; Gao Y; Zhao J; Zhong H
    Nat Food; 2024 Jan; 5(1):72-82. PubMed ID: 38177223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury horizontal spatial distribution in paddy field and accumulation of mercury in rice as well as their influencing factors in a typical mining area of Tongren City, Guizhou, China.
    Du J; Liu F; Zhao L; Liu C; Fu Z; Teng Y
    J Environ Health Sci Eng; 2021 Dec; 19(2):1555-1567. PubMed ID: 34900288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Effects of Different Soil Component Couplings on the Methylation and Bioavailability of Mercury in Soil.
    Qin A; Ran S; He T; Yin D; Xu Y
    Toxics; 2023 Nov; 11(11):. PubMed ID: 37999594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils.
    Liu CF; Wu CX; Rafiq MT; Aziz R; Hou DD; Ding ZL; Lin ZW; Lou LJ; Feng YY; Li TQ; Yang XE
    J Zhejiang Univ Sci B; 2013 Dec; 14(12):1144-51. PubMed ID: 24302714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selenium-phosphorus modified biochar reduces mercury methylation and bioavailability in agricultural soil.
    Qin D; Luo G; Qin A; He T; Wu P; Yin D
    Environ Pollut; 2024 Mar; 345():123451. PubMed ID: 38281574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mining-impacted rice paddies select for Archaeal methylators and reveal a putative (Archaeal) regulator of mercury methylation.
    Zhang R; Aris-Brosou S; Storck V; Liu J; Abdelhafiz MA; Feng X; Meng B; Poulain AJ
    ISME Commun; 2023 Jul; 3(1):74. PubMed ID: 37454192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elimination of methylmercury production potential in excessive sludge in wastewater treatment plants by sulfur addition.
    OuYang S; Li Y; Liu M; Zhao Q; Wang J; Xia J; He J; Jiang F
    Sci Total Environ; 2024 Mar; 915():169934. PubMed ID: 38199371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury Accumulation in Commercial Varieties of
    Enamorado-Montes G; Reino-Causil B; Urango-Cardenas I; Marrugo-Madrid S; Marrugo-Negrete J
    Toxics; 2021 Nov; 9(11):. PubMed ID: 34822695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unveiling the Role of Dissolved Organic Matter on the Hg Phytoavailability in Biochar-Amended Soils.
    Chen W; Yu Z; Yang X; Wang T; Li Z; Wen X; He Y; Zhang C
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36834455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mercury and Mercury-Containing Preparations: History of Use, Clinical Applications, Pharmacology, Toxicology, and Pharmacokinetics in Traditional Chinese Medicine.
    Zhao M; Li Y; Wang Z
    Front Pharmacol; 2022; 13():807807. PubMed ID: 35308204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review.
    Cheng S; Chen T; Xu W; Huang J; Jiang S; Yan B
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32664440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of Chitosan-modified Biochar on Formation of Methylmercury in Paddy Soils and Its Accumulation in Rice].
    Yang XL; Wang MX; Xu GM; Wang DY
    Huan Jing Ke Xue; 2021 Mar; 42(3):1191-1196. PubMed ID: 33742916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools.
    Liu J; Wang J; Ning Y; Yang S; Wang P; Shaheen SM; Feng X; Rinklebe J
    Environ Int; 2019 Aug; 129():461-469. PubMed ID: 31154148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Farming Activities on the Biogeochemistry of Mercury in Rice-Paddy Soil Systems.
    Tang W; Su Y; Gao Y; Zhong H
    Bull Environ Contam Toxicol; 2019 May; 102(5):635-642. PubMed ID: 31053868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mercury methylation in rice paddy and accumulation in rice plant: A review.
    Zhao L; Meng B; Feng X
    Ecotoxicol Environ Saf; 2020 Jun; 195():110462. PubMed ID: 32179234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of sewage sludge biochar in methylmercury formation and accumulation in rice.
    Zhang J; Wu S; Xu Z; Wang M; Man YB; Christie P; Liang P; Shan S; Wong MH
    Chemosphere; 2019 Mar; 218():527-533. PubMed ID: 30500713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.).
    Zhou J; Liu H; Du B; Shang L; Yang J; Wang Y
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6144-54. PubMed ID: 25398217
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.