BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 30500743)

  • 1. PMMA particles coated with chitosan-silver nanoparticles as a dual antibacterial modifier for natural rubber latex films.
    Suteewong T; Wongpreecha J; Polpanich D; Jangpatarapongsa K; Kaewsaneha C; Tangboriboonrat P
    Colloids Surf B Biointerfaces; 2019 Feb; 174():544-552. PubMed ID: 30500743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of cytotoxicity of natural rubber latex film by coating with PMMA-chitosan nanoparticles.
    Kanjanathaworn N; Polpanich D; Jangpatarapongsa K; Tangboriboonrat P
    Carbohydr Polym; 2013 Aug; 97(1):52-8. PubMed ID: 23769516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PMMA-N,N,N-trimethyl chitosan nanoparticles for fabrication of antibacterial natural rubber latex gloves.
    Arpornwichanop T; Polpanich D; Thiramanas R; Suteewong T; Tangboriboonrat P
    Carbohydr Polym; 2014 Aug; 109():1-6. PubMed ID: 24815393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro cytotoxicity evaluation of natural rubber latex film surface coated with PMMA nanoparticles.
    Anancharungsuk W; Polpanich D; Jangpatarapongsa K; Tangboriboonrat P
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):328-33. PubMed ID: 20392612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced antibacterial activity of NR latex gloves with raspberry-like PMMA-N,N,N-trimethyl chitosan particles.
    Arpornwichanop T; Polpanich D; Thiramanas R; Suteewong T; Tangboriboonrat P
    Int J Biol Macromol; 2015 Nov; 81():151-8. PubMed ID: 26234574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel antibacterial acellular porcine dermal matrix cross-linked with oxidized chitosan oligosaccharide and modified by in situ synthesis of silver nanoparticles for wound healing applications.
    Chen Y; Dan N; Dan W; Liu X; Cong L
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():1020-1036. PubMed ID: 30423683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEGylated chitosan protected silver nanoparticles as water-borne coating for leather with antibacterial property.
    Liu G; Li K; Luo Q; Wang H; Zhang Z
    J Colloid Interface Sci; 2017 Mar; 490():642-651. PubMed ID: 27940031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sandwich-like chitosan-based antibacterial nanocomposite film with reduced graphene oxide immobilized silver nanoparticles.
    Gu B; Jiang Q; Luo B; Liu C; Ren J; Wang X; Wang X
    Carbohydr Polym; 2021 May; 260():117835. PubMed ID: 33712172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects.
    Hajji S; Khedir SB; Hamza-Mnif I; Hamdi M; Jedidi I; Kallel R; Boufi S; Nasri M
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):241-254. PubMed ID: 30339915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green chemistry based in-situ synthesis of silver nanoparticles for multifunctional finishing of chitosan polysaccharide modified cellulosic textile substrate.
    Shahid-Ul-Islam ; Butola BS; Kumar A
    Int J Biol Macromol; 2020 Jun; 152():1135-1145. PubMed ID: 31783071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An environmentally benign dual action antimicrobial: quaternized chitosan/sodium alga acid multilayer films and silver nanoparticles decorated on magnetic nanoparticles.
    Jin F; Xiang Q; Chen X; Peng X; Xing X
    J Biomater Sci Polym Ed; 2016 Oct; 27(14):1447-61. PubMed ID: 27405094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells.
    Jena P; Mohanty S; Mallick R; Jacob B; Sonawane A
    Int J Nanomedicine; 2012; 7():1805-18. PubMed ID: 22619529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High antibacterial activity of chitosan films with covalent organic frameworks immobilized silver nanoparticles.
    Dai X; Li S; Li S; Ke K; Pang J; Wu C; Yan Z
    Int J Biol Macromol; 2022 Mar; 202():407-417. PubMed ID: 34999048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application.
    Thomas V; Yallapu MM; Sreedhar B; Bajpai SK
    J Biomater Sci Polym Ed; 2009; 20(14):2129-44. PubMed ID: 19874682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application.
    Vimala K; Mohan YM; Sivudu KS; Varaprasad K; Ravindra S; Reddy NN; Padma Y; Sreedhar B; MohanaRaju K
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):248-58. PubMed ID: 19945827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization, and antibacterial activity of chitosan-chelated silver nanoparticles.
    Ge J; Li M; Fan J; Celia C; Xie Y; Chang Q; Deng X
    J Biomater Sci Polym Ed; 2024 Jan; 35(1):45-62. PubMed ID: 37773055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of chitosan-silver nanoparticles onto linen for antibacterial activity and free-radical scavenging textiles.
    Shahid-Ul-Islam ; Butola BS; Verma D
    Int J Biol Macromol; 2019 Jul; 133():1134-1141. PubMed ID: 31047926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxicity of AgNPs/CS composite films: AgNPs immobilized in chitosan matrix contributes a higher inhibition rate to cell proliferation.
    Wang XH; Wang Z; Zhang J; Qi HX; Chen J; Xu M
    Bioengineered; 2016 Sep; 7(5):283-290. PubMed ID: 27285857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method.
    Zhang W; Jiang W
    Int J Biol Macromol; 2020 Jul; 155():1252-1261. PubMed ID: 31726160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanosilver-PMMA composite coating optimized to provide robust antibacterial efficacy while minimizing human bone marrow stromal cell toxicity.
    Petrochenko PE; Zheng J; Casey BJ; Bayati MR; Narayan RJ; Goering PL
    Toxicol In Vitro; 2017 Oct; 44():248-255. PubMed ID: 28739488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.