These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 30500750)
1. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III). Zhang J; Li W; Li Y; Zhou L; Lan Y Environ Pollut; 2019 Feb; 245():711-718. PubMed ID: 30500750 [TBL] [Abstract][Full Text] [Related]
2. Photoreductive dissolution of schwertmannite loaded with Cr(VI) induced by tartaric acid. Shi Y; Zhong R; Zhou L; Lan Y; Guo J Chemosphere; 2021 Aug; 276():130127. PubMed ID: 33690038 [TBL] [Abstract][Full Text] [Related]
3. Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(V). Ren HT; Ji ZY; Wu SH; Han X; Liu ZM; Jia SY Chemosphere; 2018 Oct; 208():294-302. PubMed ID: 29883864 [TBL] [Abstract][Full Text] [Related]
4. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite. Wang Y; Gao M; Huang W; Wang T; Liu Y Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940 [TBL] [Abstract][Full Text] [Related]
5. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551 [TBL] [Abstract][Full Text] [Related]
6. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED; Johnston SG; Kraal P; Bush RT; Claff S Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718 [TBL] [Abstract][Full Text] [Related]
7. Sorption of arsenic(V) and arsenic(III) to schwertmannite. Burton ED; Bush RT; Johnston SG; Watling KM; Hocking RK; Sullivan LA; Parker GK Environ Sci Technol; 2009 Dec; 43(24):9202-7. PubMed ID: 19921855 [TBL] [Abstract][Full Text] [Related]
8. Goethite catalyzed Cr(VI) reduction by tartaric acid via surface adsorption. Zhang Y; Yang J; Du J; Xing B Ecotoxicol Environ Saf; 2019 Apr; 171():594-599. PubMed ID: 30658294 [TBL] [Abstract][Full Text] [Related]
9. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms. Fan C; Guo C; Zhang J; Ding C; Li X; Reinfelder JR; Lu G; Shi Z; Dang Z J Environ Sci (China); 2019 Jun; 80():218-228. PubMed ID: 30952339 [TBL] [Abstract][Full Text] [Related]
10. Photocatalytic reduction of Cr(VI) by small molecular weight organic acids over schwertmannite. Jiang D; Li Y; Wu Y; Zhou P; Lan Y; Zhou L Chemosphere; 2012 Oct; 89(7):832-7. PubMed ID: 22652441 [TBL] [Abstract][Full Text] [Related]
11. As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. Paikaray S; Göttlicher J; Peiffer S Chemosphere; 2012 Feb; 86(6):557-64. PubMed ID: 22138337 [TBL] [Abstract][Full Text] [Related]
12. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
13. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Liao Y; Liang J; Zhou L Chemosphere; 2011 Apr; 83(3):295-301. PubMed ID: 21239041 [TBL] [Abstract][Full Text] [Related]
14. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridiei. Zhang Y; Gao K; Dang Z; Huang W; Reinfelder JR; Ren Y Sci Total Environ; 2021 Apr; 764():144279. PubMed ID: 33401041 [TBL] [Abstract][Full Text] [Related]
15. Fe(II)-mediated transformation of schwertmannite associated with calcium from acid mine drainage treatment. Fan C; Guo C; Chen W; Lu G; Shen Y; Dang Z J Environ Sci (China); 2023 Apr; 126():612-620. PubMed ID: 36503787 [TBL] [Abstract][Full Text] [Related]
16. Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters. Garg S; Xing G; Waite TD Environ Sci Technol; 2020 Jun; 54(11):6771-6780. PubMed ID: 32379429 [TBL] [Abstract][Full Text] [Related]
17. Transformation of cadmium-associated schwertmannite and subsequent element repartitioning behaviors. Fan C; Guo C; Chen M; Huang W; Wan J; Reinfelder JR; Li X; Zeng Y; Lu G; Dang Z Environ Sci Pollut Res Int; 2019 Jan; 26(1):617-627. PubMed ID: 30411291 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effect of reductive and ligand-promoted dissolution of goethite. Wang Z; Schenkeveld WD; Kraemer SM; Giammar DE Environ Sci Technol; 2015 Jun; 49(12):7236-44. PubMed ID: 25965980 [TBL] [Abstract][Full Text] [Related]
19. Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Zhao Z; Jia Y; Xu L; Zhao S Water Res; 2011 Dec; 45(19):6496-504. PubMed ID: 22000059 [TBL] [Abstract][Full Text] [Related]
20. Phosphate-Imposed Constraints on Schwertmannite Stability under Reducing Conditions. Schoepfer VA; Burton ED; Johnston SG; Kraal P Environ Sci Technol; 2017 Sep; 51(17):9739-9746. PubMed ID: 28766328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]