These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30500768)

  • 1. Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis.
    Muharja M; Umam DK; Pertiwi D; Zuhdan J; Nurtono T; Widjaja A
    Bioresour Technol; 2019 Feb; 274():89-96. PubMed ID: 30500768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk.
    Muharja M; Junianti F; Ranggina D; Nurtono T; Widjaja A
    Bioresour Technol; 2018 Feb; 249():268-275. PubMed ID: 29054055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation.
    Subhedar PB; Ray P; Gogate PR
    Ultrason Sonochem; 2018 Jan; 40(Pt B):140-150. PubMed ID: 28169125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress in applying surfactants to lignocellulose hydrolysis for sugar production].
    Dai Y; Sun D
    Sheng Wu Gong Cheng Xue Bao; 2020 May; 36(5):861-867. PubMed ID: 32567269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated process for the production of fermentable sugar and methane from rubber wood.
    Charnnok B; Sawangkeaw R; Chaiprapat S
    Bioresour Technol; 2020 Apr; 302():122785. PubMed ID: 31981804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11.
    Tabata T; Yoshiba Y; Takashina T; Hieda K; Shimizu N
    World J Microbiol Biotechnol; 2017 Mar; 33(3):47. PubMed ID: 28176202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose.
    Putrino FM; Tedesco M; Bodini RB; Oliveira AL
    Bioresour Technol; 2020 Aug; 309():123387. PubMed ID: 32320923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode.
    Abaide ER; Ugalde G; Di Luccio M; Moreira RFPM; Tres MV; Zabot GL; Mazutti MA
    Bioresour Technol; 2019 Jan; 272():510-520. PubMed ID: 30391844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation.
    de Araújo CKC; de Oliveira Campos A; de Araújo Padilha CE; de Sousa Júnior FC; do Nascimento RJA; de Macedo GR; Dos Santos ES
    Bioresour Technol; 2017 Aug; 237():20-26. PubMed ID: 28411051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of ozone pretreated energy grasses for optimal fermentable sugar production.
    Panneerselvam A; Sharma-Shivappa RR; Kolar P; Clare DA; Ranney T
    Bioresour Technol; 2013 Nov; 148():97-104. PubMed ID: 24045197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of bleaching on subcritical water- and Formosolv-pretreated tulip tree to enhance enzyme accessibility.
    Myint AA; Kim DS; Lee HW; Yoon J; Choi IG; Choi JW; Lee YW
    Bioresour Technol; 2013 Oct; 145():128-32. PubMed ID: 23566470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Two-Step Ferric Chloride and Dilute Alkaline Pretreatment for Enhancing Enzymatic Hydrolysis and Fermentable Sugar Recovery from Miscanthus sinensis.
    Li L; Ye P; Chen M; Tang S; Luo Y; Gao Y; Yan Q; Cheng X
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis.
    Lin R; Cheng J; Ding L; Song W; Qi F; Zhou J; Cen K
    Bioresour Technol; 2015 Jun; 186():8-14. PubMed ID: 25795997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.
    Hafid HS; Nor 'Aini AR; Mokhtar MN; Talib AT; Baharuddin AS; Umi Kalsom MS
    Waste Manag; 2017 Sep; 67():95-105. PubMed ID: 28527863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent calcium peroxide pretreatment and wet storage of water hyacinth for fermentable sugar production.
    Cheng YS; Chen KY; Chou TH
    Bioresour Technol; 2015 Jan; 176():267-72. PubMed ID: 25461012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential Process of Subcritical Water Hydrolysis and Hydrothermal Liquefaction of Butia Capitata Endocarp to Obtain Fermentable Sugars, Platform Chemicals, Bio-oil, and Biochar.
    Costa BSY; da Cunha HN; Draszewski CP; Martins-Vieira JC; Brondani M; Zabot GL; Tres MV; de Castilhos F; Abaide ER; Mayer FD; Hoffmann R
    Appl Biochem Biotechnol; 2024 Jul; 196(7):4317-4336. PubMed ID: 37947949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of wheat straw by Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 bacteria to enhance biofuel production by increasing total reducing sugars yield.
    Tsegaye B; Balomajumder C; Roy P
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30585-30596. PubMed ID: 30173388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcritical and supercritical technology for the production of second generation bioethanol.
    Rostagno MA; Prado JM; Mudhoo A; Santos DT; Forster-Carneiro T; Meireles MA
    Crit Rev Biotechnol; 2015; 35(3):302-12. PubMed ID: 24494703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of surfactant-assisted ultrasound-ionic liquid pretreatment on the structure and fermentable sugar production of a water hyacinth.
    Chang KL; Han YJ; Wang XQ; Chen XM; Leu SY; Liu JY; Peng YP; Liao YL; Potprommanee L
    Bioresour Technol; 2017 Aug; 237():27-30. PubMed ID: 28262304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the efficiency of enzyme utilization for sugar beet pulp hydrolysis.
    Zheng Y; Cheng YS; Yu C; Zhang R; Jenkins BM; VanderGheynst JS
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1531-9. PubMed ID: 22580744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.