These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 30500800)
1. Light intensity affects the mixotrophic carbon exploitation in Chlorella protothecoides: consequences on microalgae-bacteria based wastewater treatment. Pastore M; Santaeufemia S; Bertucco A; Sforza E Water Sci Technol; 2018 Nov; 78(8):1762-1771. PubMed ID: 30500800 [TBL] [Abstract][Full Text] [Related]
2. Microalgae-bacteria gas exchange in wastewater: how mixotrophy may reduce the oxygen supply for bacteria. Sforza E; Pastore M; Spagni A; Bertucco A Environ Sci Pollut Res Int; 2018 Oct; 25(28):28004-28014. PubMed ID: 30066074 [TBL] [Abstract][Full Text] [Related]
3. Exploiting symbiotic interactions between Chlorella protothecoides and Brevundimonas diminuta for an efficient single-step urban wastewater treatment. Pastore M; Sforza E Water Sci Technol; 2018 Aug; 78(1-2):216-224. PubMed ID: 30101804 [TBL] [Abstract][Full Text] [Related]
4. Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge. Lee SA; Lee N; Oh HM; Ahn CY J Microbiol Biotechnol; 2019 Sep; 29(9):1434-1443. PubMed ID: 31434363 [TBL] [Abstract][Full Text] [Related]
5. Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Lee TH; Jang JK; Kim HW J Microbiol Biotechnol; 2017 Nov; 27(11):2010-2018. PubMed ID: 28870010 [TBL] [Abstract][Full Text] [Related]
6. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Yadav G; Dash SK; Sen R Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810 [TBL] [Abstract][Full Text] [Related]
7. Effects of light intensity and salinity on formation and performance of microalgal-bacterial granular sludge. Li Z; Wang Z; Cai S; Lin L; Huang G; Hu Z; Jin W; Zheng Y Bioresour Technol; 2023 Oct; 386():129534. PubMed ID: 37488013 [TBL] [Abstract][Full Text] [Related]
8. Wastewater nutrient removal in a mixed microalgae-bacteria culture: effect of light and temperature on the microalgae-bacteria competition. González-Camejo J; Barat R; Pachés M; Murgui M; Seco A; Ferrer J Environ Technol; 2018 Feb; 39(4):503-515. PubMed ID: 28274182 [TBL] [Abstract][Full Text] [Related]
9. Experimental assessment and mathematical modelling of the growth of Chlorella vulgaris under photoautotrophic, heterotrophic and mixotrophic conditions. Manhaeghe D; Blomme T; Van Hulle SWH; Rousseau DPL Water Res; 2020 Oct; 184():116152. PubMed ID: 32791422 [TBL] [Abstract][Full Text] [Related]
10. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Gupta PL; Choi HJ; Lee SM Environ Sci Pollut Res Int; 2016 May; 23(10):10114-23. PubMed ID: 26867689 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic Digestion Effluents (ADEs) Treatment Coupling with Zieliński M; Dębowski M; Szwaja S; Kisielewska M Water Environ Res; 2018 Feb; 90(2):155-163. PubMed ID: 28766484 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater. Gao F; Peng YY; Li C; Yang GJ; Deng YB; Xue B; Guo YM Sci Total Environ; 2018 Nov; 640-641():943-953. PubMed ID: 30021327 [TBL] [Abstract][Full Text] [Related]
13. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology. Lee YR; Chen JJ Water Sci Technol; 2016; 73(7):1520-31. PubMed ID: 27054723 [TBL] [Abstract][Full Text] [Related]
14. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal. Ramos Tercero EA; Sforza E; Morandini M; Bertucco A Appl Biochem Biotechnol; 2014 Feb; 172(3):1470-85. PubMed ID: 24222500 [TBL] [Abstract][Full Text] [Related]
15. Influence of exogenous CO₂ on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Hu B; Min M; Zhou W; Li Y; Mohr M; Cheng Y; Lei H; Liu Y; Lin X; Chen P; Ruan R Appl Biochem Biotechnol; 2012 Apr; 166(7):1661-73. PubMed ID: 22367636 [TBL] [Abstract][Full Text] [Related]
16. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Li Y; Zhou W; Hu B; Min M; Chen P; Ruan RR Bioresour Technol; 2011 Dec; 102(23):10861-7. PubMed ID: 21982450 [TBL] [Abstract][Full Text] [Related]
17. A novel two-stage process for the effective treatment of swine wastewater using Chlorella sorokiniana AK-1 based algal-bacterial consortium under semi-continuous operation. Chen CY; Kuan SP; Nagarajan D; Chen JH; Ariyadasa TU; Chang JS Bioresour Technol; 2022 Dec; 365():128119. PubMed ID: 36252751 [TBL] [Abstract][Full Text] [Related]
18. Stepwise treatment of undiluted raw piggery wastewater, using three microalgal species adapted to high ammonia. Lee SA; Lee N; Oh HM; Ahn CY Chemosphere; 2021 Jan; 263():127934. PubMed ID: 32828055 [TBL] [Abstract][Full Text] [Related]
19. Respirometry as a tool to quantify kinetic parameters of microalgal mixotrophic growth. Sforza E; Pastore M; Barbera E; Bertucco A Bioprocess Biosyst Eng; 2019 May; 42(5):839-851. PubMed ID: 30747265 [TBL] [Abstract][Full Text] [Related]
20. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]