BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30500803)

  • 1. Transport of chromium(III) from mixtures of chromium ions by CTA- and PVC-based inclusion membranes.
    Rajewski J
    Water Sci Technol; 2018 Nov; 78(8):1792-1801. PubMed ID: 30500803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supported liquid membrane system for Cr(III) separation from Cr(III)/Cr(VI) mixtures.
    Religa P; Rajewski J; Gierycz P; Swietlik R
    Water Sci Technol; 2014; 69(12):2476-81. PubMed ID: 24960010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possibilities of chromium (III) separation from acid solution using the double-carrier supported liquid membrane (DCSLM).
    Rajewski J; Rajewska P
    Water Sci Technol; 2017 May; 75(10):2358-2368. PubMed ID: 28541944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions.
    Gherasim CV; Bourceanu G; Olariu RI; Arsene C
    J Hazard Mater; 2011 Dec; 197():244-53. PubMed ID: 22023907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PVC/EVA-based polymer inclusion membranes with improved stability and Cr(VI) extraction capacity: Water plasticization effect.
    Sellami F; Kebiche-Senhadji O; Marais S; Fatyeyeva K
    J Hazard Mater; 2022 Aug; 436():129069. PubMed ID: 35594668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a selective optical sensor for Cr(VI) monitoring in polluted waters.
    Güell R; Fontàs C; Salvadó V; Anticó E
    Anal Chim Acta; 2007 Jul; 594(2):162-8. PubMed ID: 17586110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid phase extraction of zinc(II) using a PVC-based polymer inclusion membrane with di(2-ethylhexyl)phosphoric acid (D2EHPA) as the carrier.
    Kolev SD; Baba Y; Cattrall RW; Tasaki T; Pereira N; Perera JM; Stevens GW
    Talanta; 2009 May; 78(3):795-9. PubMed ID: 19269430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Chromium(VI) Extraction from Acidic Solutions Using a Poly(vinyl chloride)-based Polymer Inclusion Membrane with Aliquat 336 as the Carrier.
    Kagaya S; Maeno T; Ito K; Gemmei-Ide M; Cattrall RW; Kolev SD
    Anal Sci; 2017; 33(5):643-646. PubMed ID: 28496072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A potentiometric rhodamine-B based membrane sensor for the selective determination of chromium ions in wastewater.
    Hassan SS; El-Shahawi MS; Othman AM; Mosaad MA
    Anal Sci; 2005 Jun; 21(6):673-8. PubMed ID: 15984204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO
    Gebru KA; Das C
    Chemosphere; 2018 Jan; 191():673-684. PubMed ID: 29078191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II).
    Jayawardane BM; Coo Ld; Cattrall RW; Kolev SD
    Anal Chim Acta; 2013 Nov; 803():106-12. PubMed ID: 24216203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membranes based on polymer miscibility for selective transport and separation of metallic ions.
    Zioui D; Arous O; Mameri N; Kerdjoudj H; Sebastian MS; Vilas JL; Nunes-Pereira J; Lanceros-Méndez S
    J Hazard Mater; 2017 Aug; 336():188-194. PubMed ID: 28494306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes.
    Kozlowski CA; Walkowiak W
    Water Res; 2002 Nov; 36(19):4870-6. PubMed ID: 12448530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a passive sampler for Zinc(II) in urban pond waters using a polymer inclusion membrane.
    Almeida MIGS; Chan C; Pettigrove VJ; Cattrall RW; Kolev SD
    Environ Pollut; 2014 Oct; 193():233-239. PubMed ID: 25058421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of polyvinyl chloride (PVC) into a versatile and efficient adsorbent of Cu(II) cations and Cr(VI) anions through hydrothermal treatment and sulfonation.
    Xu X; Zhu D; Wang X; Deng L; Fan X; Ding Z; Zhang A; Xue G; Liu Y; Xuan W; Li X; Makinia J
    J Hazard Mater; 2022 Feb; 423(Pt A):126973. PubMed ID: 34461533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speciation of chromium via laser-induced breakdown spectroscopy of ion exchange polymer membranes.
    Dockery CR; Pender JE; Goode SR
    Appl Spectrosc; 2005 Feb; 59(2):252-7. PubMed ID: 15720767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection.
    Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Study on the Effect of Plasticizers on the Characteristics of Polymer Inclusion Membranes (PIMs): Exploring Butyl Stearate as a Promising Alternative.
    Alcalde B; Elias G; Kolev SD; Méndez JA; Díez S; Oliver-Ortega H; Anticó E; Fontàs C
    Membranes (Basel); 2024 Jan; 14(1):. PubMed ID: 38248709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Poly(Vinylidene Fluoride)/Montmorillonite Polymer Inclusion Membrane: Application to Cr(VI) Extraction from Polluted Water.
    Sellami F; Kebiche-Senhadji O; Marais S; Lanel C; Fatyeyeva K
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PVDF-HFP-based polymer inclusion membrane functionalized with D2EHPA for the selective extraction of bismuth(III) from sulfate media.
    Kazemi D; Yaftian MR
    Sci Rep; 2024 May; 14(1):11622. PubMed ID: 38773177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.