These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 30500805)
1. Adsorption of 2,4-dichlorophenoxyacetic acid using rice husk biochar, granular activated carbon, and multi-walled carbon nanotubes in a fixed bed column system. Bahrami M; Amiri MJ; Beigzadeh B Water Sci Technol; 2018 Nov; 78(8):1812-1821. PubMed ID: 30500805 [TBL] [Abstract][Full Text] [Related]
2. A response surface methodology for optimization of 2,4-dichlorophenoxyacetic acid removal from synthetic and drainage water: a comparative study. Amiri MJ; Bahrami M; Beigzadeh B; Gil A Environ Sci Pollut Res Int; 2018 Dec; 25(34):34277-34293. PubMed ID: 30291615 [TBL] [Abstract][Full Text] [Related]
3. Fixed bed column adsorption systems to remove 2,4-Dichlorophenoxyacetic acid herbicide from aqueous solutions using magnetic activated carbon. Samanth A; Vinayagam R; Varadavenkatesan T; Selvaraj R Environ Res; 2024 Nov; 261():119696. PubMed ID: 39068970 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch. Njoku VO; Islam MA; Asif M; Hameed BH J Environ Manage; 2015 May; 154():138-44. PubMed ID: 25721981 [TBL] [Abstract][Full Text] [Related]
5. Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply. Alves AAA; Ruiz GLO; Nonato TCM; Müller LC; Sens ML Environ Technol; 2019 Jun; 40(15):1977-1987. PubMed ID: 29383989 [TBL] [Abstract][Full Text] [Related]
6. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000 [TBL] [Abstract][Full Text] [Related]
7. Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe Duman O; Özcan C; Gürkan Polat T; Tunç S Environ Pollut; 2019 Jan; 244():723-732. PubMed ID: 30384078 [TBL] [Abstract][Full Text] [Related]
8. Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. Han R; Wang Y; Yu W; Zou W; Shi J; Liu H J Hazard Mater; 2007 Mar; 141(3):713-8. PubMed ID: 16938390 [TBL] [Abstract][Full Text] [Related]
9. Enhanced adsorption of As(V) and Mn(VII) from industrial wastewater using multi-walled carbon nanotubes and carboxylated multi-walled carbon nanotubes. Egbosiuba TC; Abdulkareem AS; Kovo AS; Afolabi EA; Tijani JO; Roos WD Chemosphere; 2020 Sep; 254():126780. PubMed ID: 32353809 [TBL] [Abstract][Full Text] [Related]
10. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Han R; Ding D; Xu Y; Zou W; Wang Y; Li Y; Zou L Bioresour Technol; 2008 May; 99(8):2938-46. PubMed ID: 17706420 [TBL] [Abstract][Full Text] [Related]
11. Removal of mercury from water by fixed bed activated carbon columns. Goyal M; Bhagat M; Dhawan R J Hazard Mater; 2009 Nov; 171(1-3):1009-15. PubMed ID: 19632046 [TBL] [Abstract][Full Text] [Related]
12. Fixed bed column study for heavy metal removal using phosphate treated rice husk. Mohan S; Sreelakshmi G J Hazard Mater; 2008 May; 153(1-2):75-82. PubMed ID: 17897779 [TBL] [Abstract][Full Text] [Related]
13. Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal. Cuong DV; Liu NL; Nguyen VA; Hou CH Sci Total Environ; 2019 Nov; 692():844-853. PubMed ID: 31539990 [TBL] [Abstract][Full Text] [Related]
14. Agro-industrial waste: a low cost adsorbent for effective removal of 4-chloro-2-methylphenoxyacetic acid herbicide in batch and packed bed modes. Deokar SK; Mandavgane SA; Kulkarni BD Environ Sci Pollut Res Int; 2016 Aug; 23(16):16164-75. PubMed ID: 27151241 [TBL] [Abstract][Full Text] [Related]
15. Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. Lu C; Liu C; Rao GP J Hazard Mater; 2008 Feb; 151(1):239-46. PubMed ID: 17618049 [TBL] [Abstract][Full Text] [Related]
16. Comparison of activated carbon and low-cost adsorbents for removal of 2,4-dichlorophenol from wastewater using Aspen Adsorption and response surface methodology. Yasir HA; Zein SH; Holliday MC; Jabbar KJ; Ahmed U; Jalil AA Environ Technol; 2024 Jun; 45(15):3029-3047. PubMed ID: 37057364 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon. Hanigan D; Zhang J; Herckes P; Krasner SW; Chen C; Westerhoff P Environ Sci Technol; 2012 Nov; 46(22):12630-9. PubMed ID: 23106335 [TBL] [Abstract][Full Text] [Related]
18. Synergistic degradation of 2,4-dichlorophenoxyacetic acid in water by interfacial pre-reduction enhanced peroxymonosulfate activation derived from novel zero-valent iron/biochar. Liu Y; Wang T; Hong Q; Li C; Wang Z; Li F; Li M; He M; Qi F; Siedlecka EM; Kumirska J J Hazard Mater; 2024 Sep; 477():135343. PubMed ID: 39068888 [TBL] [Abstract][Full Text] [Related]
19. 2,4-dichlorophenoxyacetic acid (2,4-D) micropollutant herbicide removing from water using granular and powdered activated carbons: a comparison applied for water treatment and health safety. Coelho ERC; Brito GM; Frasson Loureiro L; Schettino MA; Freitas JCC J Environ Sci Health B; 2020; 55(4):361-375. PubMed ID: 31880197 [TBL] [Abstract][Full Text] [Related]
20. Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater--Aligning breakthrough curves and capacities. Zietzschmann F; Stützer C; Jekel M Water Res; 2016 Apr; 92():180-7. PubMed ID: 26854606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]