These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 30500881)
1. DeeReCT-PolyA: a robust and generic deep learning method for PAS identification. Xia Z; Li Y; Zhang B; Li Z; Hu Y; Chen W; Gao X Bioinformatics; 2019 Jul; 35(14):2371-2379. PubMed ID: 30500881 [TBL] [Abstract][Full Text] [Related]
2. SANPolyA: a deep learning method for identifying Poly(A) signals. Yu H; Dai Z Bioinformatics; 2020 Apr; 36(8):2393-2400. PubMed ID: 31904817 [TBL] [Abstract][Full Text] [Related]
3. DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning. Li Z; Li Y; Zhang B; Li Y; Long Y; Zhou J; Zou X; Zhang M; Hu Y; Chen W; Gao X Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):483-495. PubMed ID: 33662629 [TBL] [Abstract][Full Text] [Related]
4. Omni-PolyA: a method and tool for accurate recognition of Poly(A) signals in human genomic DNA. Magana-Mora A; Kalkatawi M; Bajic VB BMC Genomics; 2017 Aug; 18(1):620. PubMed ID: 28810905 [TBL] [Abstract][Full Text] [Related]
5. Hybrid model for efficient prediction of poly(A) signals in human genomic DNA. Albalawi F; Chahid A; Guo X; Albaradei S; Magana-Mora A; Jankovic BR; Uludag M; Van Neste C; Essack M; Laleg-Kirati TM; Bajic VB Methods; 2019 Aug; 166():31-39. PubMed ID: 30991099 [TBL] [Abstract][Full Text] [Related]
6. DeepPASTA: deep neural network based polyadenylation site analysis. Arefeen A; Xiao X; Jiang T Bioinformatics; 2019 Nov; 35(22):4577-4585. PubMed ID: 31081512 [TBL] [Abstract][Full Text] [Related]
7. Poly(A)-DG: A deep-learning-based domain generalization method to identify cross-species Poly(A) signal without prior knowledge from target species. Zheng Y; Wang H; Zhang Y; Gao X; Xing EP; Xu M PLoS Comput Biol; 2020 Nov; 16(11):e1008297. PubMed ID: 33151940 [TBL] [Abstract][Full Text] [Related]
9. Poly(A) motif prediction using spectral latent features from human DNA sequences. Xie B; Jankovic BR; Bajic VB; Song L; Gao X Bioinformatics; 2013 Jul; 29(13):i316-25. PubMed ID: 23813000 [TBL] [Abstract][Full Text] [Related]
10. Deep learning of the back-splicing code for circular RNA formation. Wang J; Wang L Bioinformatics; 2019 Dec; 35(24):5235-5242. PubMed ID: 31077303 [TBL] [Abstract][Full Text] [Related]
11. DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions. Kalkatawi M; Magana-Mora A; Jankovic B; Bajic VB Bioinformatics; 2019 Apr; 35(7):1125-1132. PubMed ID: 30184052 [TBL] [Abstract][Full Text] [Related]
12. POLYAR, a new computer program for prediction of poly(A) sites in human sequences. Akhtar MN; Bukhari SA; Fazal Z; Qamar R; Shahmuradov IA BMC Genomics; 2010 Nov; 11():646. PubMed ID: 21092114 [TBL] [Abstract][Full Text] [Related]
13. Implications of polyadenylation in health and disease. Curinha A; Oliveira Braz S; Pereira-Castro I; Cruz A; Moreira A Nucleus; 2014; 5(6):508-19. PubMed ID: 25484187 [TBL] [Abstract][Full Text] [Related]
14. An improved poly(A) motifs recognition method based on decision level fusion. Zhang S; Han J; Liu J; Zheng J; Liu R Comput Biol Chem; 2015 Feb; 54():49-56. PubMed ID: 25594576 [TBL] [Abstract][Full Text] [Related]
15. PolyA_DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes. Wang R; Nambiar R; Zheng D; Tian B Nucleic Acids Res; 2018 Jan; 46(D1):D315-D319. PubMed ID: 29069441 [TBL] [Abstract][Full Text] [Related]
16. LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning. Yang C; Yang L; Zhou M; Xie H; Zhang C; Wang MD; Zhu H Bioinformatics; 2018 Nov; 34(22):3825-3834. PubMed ID: 29850816 [TBL] [Abstract][Full Text] [Related]
17. Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation. Weng L; Li Y; Xie X; Shi Y RNA; 2016 Jun; 22(6):813-21. PubMed ID: 27095026 [TBL] [Abstract][Full Text] [Related]
18. Improved survival analysis by learning shared genomic information from pan-cancer data. Kim S; Kim K; Choe J; Lee I; Kang J Bioinformatics; 2020 Jul; 36(Suppl_1):i389-i398. PubMed ID: 32657401 [TBL] [Abstract][Full Text] [Related]
19. DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions. Liu Q; Fang H; Wang X; Wang M; Li S; Coin LJM; Li F; Song J Bioinformatics; 2022 Sep; 38(17):4053-4061. PubMed ID: 35799358 [TBL] [Abstract][Full Text] [Related]
20. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text. Zhu Q; Li X; Conesa A; Pereira C Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]