These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 30500899)
1. Effect of cytochrome bc1 complex inhibition during fermentation and growth of Scheffersomyces stipitis using glucose, xylose or arabinose as carbon sources. Granados-Arvizu JA; Madrigal-Perez LA; Canizal-García M; González-Hernández JC; García-Almendárez BE; Regalado-González C FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30500899 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of alternative respiration system of Scheffersomyces stipitis and effect on glucose or xylose fermentation. Granados-Arvizu JA; Canizal-García M; Madrigal-Pérez LA; González-Hernández JC; Regalado-González C FEMS Yeast Res; 2021 Mar; 21(2):. PubMed ID: 33493281 [TBL] [Abstract][Full Text] [Related]
3. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Su YK; Willis LB; Jeffries TW Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099 [TBL] [Abstract][Full Text] [Related]
4. Insertional tagging of the Scheffersomyces stipitis gene HEM25 involved in regulation of glucose and xylose alcoholic fermentation. Berezka K; Semkiv M; Borbuliak M; Blomqvist J; Linder T; Ruchała J; Dmytruk K; Passoth V; Sibirny A Cell Biol Int; 2021 Mar; 45(3):507-517. PubMed ID: 31829471 [TBL] [Abstract][Full Text] [Related]
5. Impact of pseudo-continuous fermentation on the ethanol tolerance of Scheffersomyces stipitis. Liang M; Kim MH; He QP; Wang J J Biosci Bioeng; 2013 Sep; 116(3):319-26. PubMed ID: 23628219 [TBL] [Abstract][Full Text] [Related]
6. Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations. Bonan CIDG; Biazi LE; Santos SC; Soares LB; Dionísio SR; Hoffmam ZB; Costa AC; Ienczak JL Biotechnol Lett; 2019 Jul; 41(6-7):753-761. PubMed ID: 30963342 [TBL] [Abstract][Full Text] [Related]
7. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Unrean P; Nguyen NH Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940 [TBL] [Abstract][Full Text] [Related]
8. Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Veras HCT; Parachin NS; Almeida JRM Microb Cell Fact; 2017 Sep; 16(1):153. PubMed ID: 28903764 [TBL] [Abstract][Full Text] [Related]
9. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997 [TBL] [Abstract][Full Text] [Related]
11. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Karagöz P; Özkan M Bioresour Technol; 2014 Apr; 158():286-93. PubMed ID: 24614063 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Candida sp. NY7122, a novel pentose-fermenting soil yeast. Watanabe I; Ando A; Nakamura T J Ind Microbiol Biotechnol; 2012 Feb; 39(2):307-15. PubMed ID: 21898112 [TBL] [Abstract][Full Text] [Related]
13. Effect of Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilis AX101. Gyamerah M; Ampaw-Asiedu M; Mackey J; Menezes B; Woldesenbet S Lett Appl Microbiol; 2018 Jun; 66(6):549-557. PubMed ID: 29573262 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production. Geiger M; Gibbons J; West T; Hughes SR; Gibbons W J Lab Autom; 2012 Dec; 17(6):417-24. PubMed ID: 22786982 [TBL] [Abstract][Full Text] [Related]
15. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae. De Bari I; De Canio P; Cuna D; Liuzzi F; Capece A; Romano P N Biotechnol; 2013 Sep; 30(6):591-7. PubMed ID: 23454083 [TBL] [Abstract][Full Text] [Related]
16. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars. Hughes SR; Gibbons WR; Bang SS; Pinkelman R; Bischoff KM; Slininger PJ; Qureshi N; Kurtzman CP; Liu S; Saha BC; Jackson JS; Cotta MA; Rich JO; Javers JE J Ind Microbiol Biotechnol; 2012 Jan; 39(1):163-73. PubMed ID: 21748309 [TBL] [Abstract][Full Text] [Related]
17. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
18. RNA-Seq of the xylose-fermenting yeast Scheffersomyces stipitis cultivated in glucose or xylose. Yuan T; Ren Y; Meng K; Feng Y; Yang P; Wang S; Shi P; Wang L; Xie D; Yao B Appl Microbiol Biotechnol; 2011 Dec; 92(6):1237-49. PubMed ID: 22086068 [TBL] [Abstract][Full Text] [Related]
19. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag. Slininger PJ; Thompson SR; Weber S; Liu ZL; Moon J Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229 [TBL] [Abstract][Full Text] [Related]
20. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2. Rodrussamee N; Sattayawat P; Yamada M BMC Microbiol; 2018 Jul; 18(1):73. PubMed ID: 30005621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]