BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30501120)

  • 1. Measuring Dynamic Leg Length during Normal Gait.
    Khamis S; Springer S; Ovadia D; Krimus S; Carmeli E
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic leg length measurement is a valid method for detecting anatomic leg length discrepancy.
    Khamis S
    Technol Health Care; 2021; 29(1):175-185. PubMed ID: 33016897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of simulated leg length discrepancy on lower limb biomechanics during gait.
    Khamis S; Carmeli E
    Gait Posture; 2018 Mar; 61():73-80. PubMed ID: 29306147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait patterns in children with limb length discrepancy.
    Aiona M; Do KP; Emara K; Dorociak R; Pierce R
    J Pediatr Orthop; 2015; 35(3):280-4. PubMed ID: 25075889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of leg length discrepancy on spinal motion during gait: three-dimensional analysis in healthy volunteers.
    Kakushima M; Miyamoto K; Shimizu K
    Spine (Phila Pa 1976); 2003 Nov; 28(21):2472-6. PubMed ID: 14595166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trans-tibial amputee gait: time-distance parameters and EMG activity.
    Isakov E; Keren O; Benjuya N
    Prosthet Orthot Int; 2000 Dec; 24(3):216-20. PubMed ID: 11195356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical strategies implemented to compensate for mild leg length discrepancy during gait.
    Resende RA; Kirkwood RN; Deluzio KJ; Cabral S; Fonseca ST
    Gait Posture; 2016 May; 46():147-53. PubMed ID: 27131193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mild leg length discrepancy affects lower limbs, pelvis and trunk biomechanics of individuals with knee osteoarthritis during gait.
    Resende RA; Kirkwood RN; Deluzio KJ; Morton AM; Fonseca ST
    Clin Biomech (Bristol, Avon); 2016 Oct; 38():1-7. PubMed ID: 27509479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of applying additional weight to the affected leg on gait patterns during aquatic treadmill walking in people poststroke.
    Jung T; Lee D; Charalambous C; Vrongistinos K
    Arch Phys Med Rehabil; 2010 Jan; 91(1):129-36. PubMed ID: 20103407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting the presence of leg length discrepancy based on gait deviations and functional measurement of leg length during walking.
    Khamis S; Leisman G; Carmeli E
    BMJ Case Rep; 2017 Aug; 2017():. PubMed ID: 28784874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full gait cycle analysis of lower limb and trunk kinematics and muscle activations during walking in participants with and without ankle instability.
    Northeast L; Gautrey CN; Bottoms L; Hughes G; Mitchell ACS; Greenhalgh A
    Gait Posture; 2018 Jul; 64():114-118. PubMed ID: 29902713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immediate effects of unilateral restricted ankle motion on gait kinematics in healthy subjects.
    Romkes J; Schweizer K
    Gait Posture; 2015 Mar; 41(3):835-40. PubMed ID: 25800648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired heel to toe progression during gait is related to reduced ankle range of motion in people with Multiple Sclerosis.
    Psarakis M; Greene D; Moresi M; Baker M; Stubbs P; Brodie M; Lord S; Hoang P
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():96-100. PubMed ID: 28898816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly.
    Toebes MJ; Hoozemans MJ; Dekker J; van Dieën JH
    Gait Posture; 2014; 40(1):215-9. PubMed ID: 24768117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait.
    Moosabhoy MA; Gard SA
    Gait Posture; 2006 Dec; 24(4):493-501. PubMed ID: 16439130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower limb alignment and foot angle are related to stance phase knee adduction in normal subjects: a critical analysis of the reliability of gait analysis data.
    Andrews M; Noyes FR; Hewett TE; Andriacchi TP
    J Orthop Res; 1996 Mar; 14(2):289-95. PubMed ID: 8648508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy.
    Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K
    Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.