These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 30501260)
1. Using rectangular collocation with finite difference derivatives to solve electronic Schrödinger equation. Manzhos S; Carrington T J Chem Phys; 2018 Nov; 149(20):204105. PubMed ID: 30501260 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning Optimization of the Collocation Point Set for Solving the Kohn-Sham Equation. Ku J; Kamath A; Carrington T; Manzhos S J Phys Chem A; 2019 Dec; 123(49):10631-10642. PubMed ID: 31724862 [TBL] [Abstract][Full Text] [Related]
3. Using Collocation to Solve the Schrödinger Equation. Manzhos S; Ihara M; Carrington T J Chem Theory Comput; 2023 Mar; 19(6):1641-1656. PubMed ID: 36974479 [TBL] [Abstract][Full Text] [Related]
4. A new collocation-based multi-configuration time-dependent Hartree (MCTDH) approach for solving the Schrödinger equation with a general potential energy surface. Wodraszka R; Carrington T J Chem Phys; 2018 Jan; 148(4):044115. PubMed ID: 29390829 [TBL] [Abstract][Full Text] [Related]
5. Computing vibrational spectra using a new collocation method with a pruned basis and more points than basis functions: Avoiding quadrature. Simmons J; Carrington T J Chem Phys; 2023 Apr; 158(14):144115. PubMed ID: 37061500 [TBL] [Abstract][Full Text] [Related]
6. Using collocation to study the vibrational dynamics of molecules. Carrington T Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119158. PubMed ID: 33218875 [TBL] [Abstract][Full Text] [Related]
7. A pruned collocation-based multiconfiguration time-dependent Hartree approach using a Smolyak grid for solving the Schrödinger equation with a general potential energy surface. Wodraszka R; Carrington T J Chem Phys; 2019 Apr; 150(15):154108. PubMed ID: 31005102 [TBL] [Abstract][Full Text] [Related]
8. Using collocation and a hierarchical basis to solve the vibrational Schrödinger equation. Zak EJ; Carrington T J Chem Phys; 2019 May; 150(20):204108. PubMed ID: 31153182 [TBL] [Abstract][Full Text] [Related]
9. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation. Manzhos S; Carrington T J Chem Phys; 2016 Dec; 145(22):224110. PubMed ID: 27984898 [TBL] [Abstract][Full Text] [Related]
10. Communication: favorable dimensionality scaling of rectangular collocation with adaptable basis functions up to 7 dimensions. Manzhos S; Chan M; Carrington T J Chem Phys; 2013 Aug; 139(5):051101. PubMed ID: 23927236 [TBL] [Abstract][Full Text] [Related]
11. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures. Avila G; Carrington T J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718 [TBL] [Abstract][Full Text] [Related]
12. Solving the Schroedinger equation using Smolyak interpolants. Avila G; Carrington T J Chem Phys; 2013 Oct; 139(13):134114. PubMed ID: 24116559 [TBL] [Abstract][Full Text] [Related]
13. Computing the Anharmonic Vibrational Spectrum of UF6 in 15 Dimensions with an Optimized Basis Set and Rectangular Collocation. Manzhos S; Carrington T; Laverdure L; Mosey N J Phys Chem A; 2015 Sep; 119(36):9557-67. PubMed ID: 26295217 [TBL] [Abstract][Full Text] [Related]
14. Using nonproduct quadrature grids to solve the vibrational Schrödinger equation in 12D. Avila G; Carrington T J Chem Phys; 2011 Feb; 134(5):054126. PubMed ID: 21303111 [TBL] [Abstract][Full Text] [Related]
15. A rectangular collocation multi-configuration time-dependent Hartree (MCTDH) approach with time-independent points for calculations on general potential energy surfaces. Wodraszka R; Carrington T J Chem Phys; 2021 Mar; 154(11):114107. PubMed ID: 33752363 [TBL] [Abstract][Full Text] [Related]
16. Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules: basic theories and features. Nakatsuji H; Nakashima H J Chem Phys; 2015 Feb; 142(8):084117. PubMed ID: 25725722 [TBL] [Abstract][Full Text] [Related]
17. Reducing the cost of using collocation to compute vibrational energy levels: Results for CH Avila G; Carrington T J Chem Phys; 2017 Aug; 147(6):064103. PubMed ID: 28810786 [TBL] [Abstract][Full Text] [Related]
18. Parameterized Bases for Calculating Vibrational Spectra Directly from ab Initio Data Using Rectangular Collocation. Chan M; Manzhos S; Carrington T; Yamashita K J Chem Theory Comput; 2012 Jun; 8(6):2053-61. PubMed ID: 26593837 [TBL] [Abstract][Full Text] [Related]
19. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry. Nakatsuji H Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372 [TBL] [Abstract][Full Text] [Related]
20. Numerical computing approach for solving Hunter-Saxton equation arising in liquid crystal model through sinc collocation method. Ahmad I; Ilyas H; Kutlu K; Anam V; Hussain SI; Guirao JLG Heliyon; 2021 Jul; 7(7):e07600. PubMed ID: 34377855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]