These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30501262)

  • 21. Investigation of Azobenzene Photoisomerization Effect on Morphologies and Properties of Nanostructured Thermosets Involving Epoxy and a Diblock Copolymer.
    Adeel M; Zhao B; Xu S; Zheng S
    J Phys Chem B; 2019 Nov; 123(47):10110-10123. PubMed ID: 31644292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How much time is needed to form a kinetically stable glass? AC calorimetric study of vapor-deposited glasses of ethylcyclohexane.
    Chua YZ; Ahrenberg M; Tylinski M; Ediger MD; Schick C
    J Chem Phys; 2015 Feb; 142(5):054506. PubMed ID: 25662653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors.
    Dalal SS; Walters DM; Lyubimov I; de Pablo JJ; Ediger MD
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4227-32. PubMed ID: 25831545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic stability and heat capacity of vapor-deposited glasses of o-terphenyl.
    Whitaker KR; Tylinski M; Ahrenberg M; Schick C; Ediger MD
    J Chem Phys; 2015 Aug; 143(8):084511. PubMed ID: 26328860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limited surface mobility inhibits stable glass formation for 2-ethyl-1-hexanol.
    Tylinski M; Beasley MS; Chua YZ; Schick C; Ediger MD
    J Chem Phys; 2017 May; 146(20):203317. PubMed ID: 28571379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Over What Length Scale Does an Inorganic Substrate Perturb the Structure of a Glassy Organic Semiconductor?
    Bagchi K; Deng C; Bishop C; Li Y; Jackson NE; Yu L; Toney MF; de Pablo JJ; Ediger MD
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26717-26726. PubMed ID: 32402187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus.
    Kearns KL; Krzyskowski P; Devereaux Z
    J Chem Phys; 2017 May; 146(20):203328. PubMed ID: 28571345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural relaxation of vapor-deposited molecular glasses and supercooled liquids.
    Ishii K; Nakayama H
    Phys Chem Chem Phys; 2014 Jun; 16(24):12073-92. PubMed ID: 24828764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Origin of Anisotropic Molecular Packing in Vapor-Deposited Alq3 Glasses.
    Bagchi K; Jackson NE; Gujral A; Huang C; Toney MF; Yu L; de Pablo JJ; Ediger MD
    J Phys Chem Lett; 2019 Jan; 10(2):164-170. PubMed ID: 30582803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vapor-Deposited Glass Structure Determined by Deposition Rate-Substrate Temperature Superposition Principle.
    Bishop C; Gujral A; Toney MF; Yu L; Ediger MD
    J Phys Chem Lett; 2019 Jul; 10(13):3536-3542. PubMed ID: 31177780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal stability of vapor-deposited stable glasses of an organic semiconductor.
    Walters DM; Richert R; Ediger MD
    J Chem Phys; 2015 Apr; 142(13):134504. PubMed ID: 25854250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput ellipsometric characterization of vapor-deposited indomethacin glasses.
    Dalal SS; Fakhraai Z; Ediger MD
    J Phys Chem B; 2013 Dec; 117(49):15415-25. PubMed ID: 23865432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Vapor Deposition on Structural and Charge Transport Properties of Ethylbenzene Films.
    Antony LW; Jackson NE; Lyubimov I; Vishwanath V; Ediger MD; de Pablo JJ
    ACS Cent Sci; 2017 May; 3(5):415-424. PubMed ID: 28573203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate Temperature to Control Moduli and Water Uptake in Thin Films of Vapor Deposited N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPD).
    Torres JM; Bakken N; Li J; Vogt BD
    J Phys Chem B; 2015 Sep; 119(35):11928-34. PubMed ID: 26230183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photocontrolled Reversible Guest Uptake, Storage, and Release by Azobenzene-Modified Microporous Multilayer Films of Pillar[5]arenes.
    Ogoshi T; Takashima S; Yamagishi TA
    J Am Chem Soc; 2018 Jan; 140(4):1544-1548. PubMed ID: 29319309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of organic glasses in cis/trans photoisomerization at low temperatures.
    Zhao YP; Yang LY; Simmons CJ; Liu RS
    Chem Asian J; 2009 May; 4(5):754-60. PubMed ID: 19347894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vapor-Deposited Ethylbenzene Glasses Approach "Ideal Glass" Density.
    Beasley MS; Bishop C; Kasting BJ; Ediger MD
    J Phys Chem Lett; 2019 Jul; 10(14):4069-4075. PubMed ID: 31269793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisotropic structure and transformation kinetics of vapor-deposited indomethacin glasses.
    Dawson KJ; Zhu L; Yu L; Ediger MD
    J Phys Chem B; 2011 Jan; 115(3):455-63. PubMed ID: 21166431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inherent structure energy is a good indicator of molecular mobility in glasses.
    Helfferich J; Lyubimov I; Reid D; de Pablo JJ
    Soft Matter; 2016 Jul; 12(27):5898-904. PubMed ID: 27334679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emergence of a substrate-temperature-dependent dielectric process in a prototypical vapor deposited hole-transport glass.
    Rodríguez-Tinoco C; Rams-Baron M; Rodríguez-Viejo J; Paluch M
    Sci Rep; 2018 Jan; 8(1):1380. PubMed ID: 29358585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.