BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30501276)

  • 1. Thermal characterization of gallium oxide Schottky barrier diodes.
    Chatterjee B; Jayawardena A; Heller E; Snyder DW; Dhar S; Choi S
    Rev Sci Instrum; 2018 Nov; 89(11):114903. PubMed ID: 30501276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ga
    Song Y; Shoemaker D; Leach JH; McGray C; Huang HL; Bhattacharyya A; Zhang Y; Gonzalez-Valle CU; Hess T; Zhukovsky S; Ferri K; Lavelle RM; Perez C; Snyder DW; Maria JP; Ramos-Alvarado B; Wang X; Krishnamoorthy S; Hwang J; Foley BM; Choi S
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40817-40829. PubMed ID: 34470105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of β-Ga
    He Y; Zhao F; Huang B; Zhang T; Zhu H
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review.
    Zhan T; Xu M; Cao Z; Zheng C; Kurita H; Narita F; Wu YJ; Xu Y; Wang H; Song M; Wang W; Zhou Y; Liu X; Shi Y; Jia Y; Guan S; Hanajiri T; Maekawa T; Okino A; Watanabe T
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Overview of the Ultrawide Bandgap Ga
    Xue H; He Q; Jian G; Long S; Pang T; Liu M
    Nanoscale Res Lett; 2018 Sep; 13(1):290. PubMed ID: 30232628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Transport across Ion-Cut Monocrystalline β-Ga
    Cheng Z; Mu F; You T; Xu W; Shi J; Liao ME; Wang Y; Huynh K; Suga T; Goorsky MS; Ou X; Graham S
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44943-44951. PubMed ID: 32909730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Conductivity of β-Phase Ga
    Song Y; Ranga P; Zhang Y; Feng Z; Huang HL; Santia MD; Badescu SC; Gonzalez-Valle CU; Perez C; Ferri K; Lavelle RM; Snyder DW; Klein BA; Deitz J; Baca AG; Maria JP; Ramos-Alvarado B; Hwang J; Zhao H; Wang X; Krishnamoorthy S; Foley BM; Choi S
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38477-38490. PubMed ID: 34370459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-Wide Band Gap Ga
    Song Y; Bhattacharyya A; Karim A; Shoemaker D; Huang HL; Roy S; McGray C; Leach JH; Hwang J; Krishnamoorthy S; Choi S
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7137-7147. PubMed ID: 36700621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Annealing Atmosphere on the Characteristics of Ga
    Lee YJ; Schweitz MA; Oh JM; Koo SM
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Vertical Ga
    Rama VKR; Ranade AK; Desai P; Todankar B; Kalita G; Suzuki H; Tanemura M; Hayashi Y
    ACS Omega; 2022 Aug; 7(30):26021-26028. PubMed ID: 35936403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices.
    Rafin SMSH; Ahmed R; Haque MA; Hossain MK; Haque MA; Mohammed OA
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric dipole effect in PdCoO
    Harada T; Ito S; Tsukazaki A
    Sci Adv; 2019 Oct; 5(10):eaax5733. PubMed ID: 31667346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy.
    Bagnall KR; Moore EA; Badescu SC; Zhang L; Wang EN
    Rev Sci Instrum; 2017 Nov; 88(11):113111. PubMed ID: 29195348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Ga
    Jiao T; Chen W; Li Z; Diao Z; Dang X; Chen P; Dong X; Zhang Y; Zhang B
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Temperature Sensors Based on Dual 4H-SiC JBS and SBD Devices.
    Min SJ; Shin MC; Thi Nguyen N; Oh JM; Koo SM
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Modelling of Gallium Nitride Based Lateral Schottky Barrier Diodes with Anode Recesses for mmWave and THz Applications.
    Alathbah M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-wide bandgap semiconductor Ga
    Zhang J; Dong P; Dang K; Zhang Y; Yan Q; Xiang H; Su J; Liu Z; Si M; Gao J; Kong M; Zhou H; Hao Y
    Nat Commun; 2022 Jul; 13(1):3900. PubMed ID: 35794123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Temperature Sensing Performance of 4H-SiC Schottky Barrier Diodes, Junction Barrier Schottky Diodes, and PiN Diodes.
    Min SJ; Schweitz MA; Nguyen NT; Koo SM
    J Nanosci Nanotechnol; 2021 Mar; 21(3):2001-2004. PubMed ID: 33404483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Transport across Metal/β-Ga
    Shi J; Yuan C; Huang HL; Johnson J; Chae C; Wang S; Hanus R; Kim S; Cheng Z; Hwang J; Graham S
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):29083-29091. PubMed ID: 34109790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of Recent Progress on Vertical GaN-Based PN Diodes.
    Pu T; Younis U; Chiu HC; Xu K; Kuo HC; Liu X
    Nanoscale Res Lett; 2021 Jun; 16(1):101. PubMed ID: 34097144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.