These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 30501306)
1. A highly accurate measurement of resonator Gyüre-Garami B; Sági O; Márkus BG; Simon F Rev Sci Instrum; 2018 Nov; 89(11):113903. PubMed ID: 30501306 [TBL] [Abstract][Full Text] [Related]
2. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators. Gyüre B; Márkus BG; Bernáth B; Murányi F; Simon F Rev Sci Instrum; 2015 Sep; 86(9):094702. PubMed ID: 26429462 [TBL] [Abstract][Full Text] [Related]
3. A new method for wideband characterization of resonator-based sensing platforms. Munir F; Wathen A; Hunt WD Rev Sci Instrum; 2011 Mar; 82(3):035119. PubMed ID: 21456800 [TBL] [Abstract][Full Text] [Related]
4. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation. Reijerse E; Lendzian F; Isaacson R; Lubitz W J Magn Reson; 2012 Jan; 214(1):237-43. PubMed ID: 22196894 [TBL] [Abstract][Full Text] [Related]
5. Determination of the Dielectric Properties of Storage Materials for Exhaust Gas Aftertreatment Using the Microwave Cavity Perturbation Method. Steiner C; Walter S; Malashchuk V; Hagen G; Kogut I; Fritze H; Moos R Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114027 [TBL] [Abstract][Full Text] [Related]
6. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory. Elnaggar SY; Tervo R; Mattar SM J Magn Reson; 2014 May; 242():57-66. PubMed ID: 24607823 [TBL] [Abstract][Full Text] [Related]
7. Q-Factor Spectrum of a Piezoceramic Resonator and Method for Piezoelectric Loss Factor Determination. Mezheritsky A IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1849-1856. PubMed ID: 28880171 [TBL] [Abstract][Full Text] [Related]
8. On-chip integration of high-frequency electron paramagnetic resonance spectroscopy and Hall-effect magnetometry. Quddusi HM; Ramsey CM; Gonzalez-Pons JC; Henderson JJ; del Barco E; de Loubens G; Kent AD Rev Sci Instrum; 2008 Jul; 79(7):074703. PubMed ID: 18681725 [TBL] [Abstract][Full Text] [Related]
9. Gain-assisted ultra-high-Q spoof plasmonic resonator for the sensing of polar liquids. Cai J; Zhou YJ; Zhang Y; Li QY Opt Express; 2018 Sep; 26(19):25460-25470. PubMed ID: 30469647 [TBL] [Abstract][Full Text] [Related]
10. A new method of determining the equivalent circuit parameters of piezoelectric resonators and analysis of the piezoelectric loading effect. Kim JS; Choi K; Yu I IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):424-6. PubMed ID: 18263202 [TBL] [Abstract][Full Text] [Related]
11. New ceramic EPR resonators with high dielectric permittivity. Golovina I; Geifman I; Belous A J Magn Reson; 2008 Nov; 195(1):52-9. PubMed ID: 18815061 [TBL] [Abstract][Full Text] [Related]
12. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses. Yong YK; Patel MS; Tanaka M IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012 [TBL] [Abstract][Full Text] [Related]
13. Measurement of the Q value of an acoustic resonator. Biwa T; Ueda Y; Nomura H; Mizutani U; Yazaki T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026601. PubMed ID: 16196729 [TBL] [Abstract][Full Text] [Related]
14. Microwave resonator array with liquid metal selection for narrow band material sensing. Wiltshire BD; Rafi MA; Zarifi MH Sci Rep; 2021 Apr; 11(1):8598. PubMed ID: 33883643 [TBL] [Abstract][Full Text] [Related]
15. Ultraviolet sensing using a TiO Zarifi MH; Wiltshire B; Mahdi N; Kar P; Shankar K; Daneshmand M Nanoscale; 2018 Mar; 10(10):4882-4889. PubMed ID: 29480301 [TBL] [Abstract][Full Text] [Related]
16. Magnetic resonance force microscopy using ferromagnetic resonance of a magnetic tip excited by microwave transmission via a coaxial resonator. Kinoshita Y; Jun Li Y; Yoshimura S; Saito H; Sugawara Y Nanotechnology; 2017 Dec; 28(48):485709. PubMed ID: 28976360 [TBL] [Abstract][Full Text] [Related]
17. Design and Test of a New Dielectric-Loaded Resonator for the Accurate Characterization of Conductive and Dielectric Materials. Alimenti A; Torokhtii K; Vidal García P; Pompeo N; Silva E Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617119 [TBL] [Abstract][Full Text] [Related]
18. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots. Busch MH; Vollmann W; Grönemeyer DH Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878 [TBL] [Abstract][Full Text] [Related]
19. Effects of electromagnetic radiation on the Q of quartz resonators. Yong YK; Patel M; Vig J; Ballato A IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):353-60. PubMed ID: 19251522 [TBL] [Abstract][Full Text] [Related]