These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30501772)

  • 1. Effect of Temperature on Deformation and Fracture Behaviour of Nanostructured Polycrystalline Ni Under Tensile Hydrostatic Stress by Molecular Dynamics Simulation.
    Pei L; Lu C; Tang Q; Zhang Y; Li J; Zhang C; Zhao X; Tieu K
    J Nanosci Nanotechnol; 2019 May; 19(5):2723-2731. PubMed ID: 30501772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dislocation-Governed Plastic Deformation and Fracture Toughness of Nanotwinned Magnesium.
    Zhou L; Guo YF
    Materials (Basel); 2015 Aug; 8(8):5250-5264. PubMed ID: 28793502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars.
    Xu X; Binkele P; Verestek W; Schmauder S
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33946981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy.
    Qian D; Xue J; Zhang A; Li Y; Tamura N; Song Z; Chen K
    Sci Rep; 2017 Jun; 7(1):2859. PubMed ID: 28588298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.
    Li X; Wei Y; Lu L; Lu K; Gao H
    Nature; 2010 Apr; 464(7290):877-80. PubMed ID: 20376146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Soft and Nanoductile Mechanical Nature of Single and Polycrystalline Organic-Inorganic Hybrid Perovskites for Flexible Functional Devices.
    Yu J; Wang M; Lin S
    ACS Nano; 2016 Dec; 10(12):11044-11057. PubMed ID: 27935297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study.
    Reddy KV; Pal S
    J Mol Model; 2018 Sep; 24(10):277. PubMed ID: 30196452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the deformation behavior and mechanical characteristics of polycrystalline chromium-nickel alloys using molecular dynamics.
    Bui TX; Fang TH; Lee CI
    J Mol Model; 2022 Sep; 28(10):328. PubMed ID: 36138158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical model for the plastic flow and ductile fracture of polycrystalline solids.
    Lagos M; Retamal C; Valle R; Paredes R
    Heliyon; 2024 Feb; 10(3):e25348. PubMed ID: 38327426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys.
    Yu H; Tieu AK; Lu C; Liu X; Liu M; Godbole A; Kong C; Qin Q
    Sci Rep; 2015 Apr; 5():9568. PubMed ID: 25851228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multi-Scale Study on Deformation and Failure Process of Metallic Structures in Extreme Environment.
    Li ZH; Lu C; Shi A; Zhao S; Ou B; Wei N
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Tensile deformation behaviour and mechanical properties in dental Ni-base casting alloys (author's transl)].
    Wakasa K; Yamaki M; Nakatsuka A; Nishimura T
    Shika Rikogaku Zasshi; 1981 Apr; 22(59):217-21. PubMed ID: 6948049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale friction behavior and deformation during copper chemical mechanical polishing process.
    Ngo TB; Nguyen VT; Fang TH
    J Mol Model; 2023 Aug; 29(9):293. PubMed ID: 37620735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-Field Model for the Simulation of Brittle-Anisotropic and Ductile Crack Propagation in Composite Materials.
    Herrmann C; Schneider D; Schoof E; Schwab F; Nestler B
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal.
    Xu S; Deng X
    Nanotechnology; 2008 Mar; 19(11):115705. PubMed ID: 21730565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale ductile fracture and associated atomistic mechanisms in a body-centered cubic refractory metal.
    Lu Y; Chen Y; Zeng Y; Zhang Y; Kong D; Li X; Zhu T; Li X; Mao S; Zhang Z; Wang L; Han X
    Nat Commun; 2023 Sep; 14(1):5540. PubMed ID: 37684248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Grain Boundary Misorientation on the Mechanical Properties and Mechanism of Plastic Deformation of Ni/Ni
    Ding J; Zhang SL; Tong Q; Wang LS; Huang X; Song K; Lu SQ
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33333827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum energy pathways of brittle and ductile deformation/fracture processes.
    Zahn D
    J Chem Phys; 2008 May; 128(18):184707. PubMed ID: 18532836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.
    Pang WW; Zhang P; Zhang GC; Xu AG; Zhao XG
    Sci Rep; 2014 Nov; 4():6981. PubMed ID: 25382029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.