These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30501793)

  • 1. Determination of Oxidative Potential Caused by Brake Wear Debris in Non-Cellular Systems.
    Rajhelová H; Peikertová P; Čabanová K; Kuzníková L; Barabaszová KČ; Kutláková KM; Vaculík M; Kukutschová J
    J Nanosci Nanotechnol; 2019 May; 19(5):2869-2875. PubMed ID: 30501793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation.
    Barosova H; Chortarea S; Peikertova P; Clift MJD; Petri-Fink A; Kukutschova J; Rothen-Rutishauser B
    Arch Toxicol; 2018 Jul; 92(7):2339-2351. PubMed ID: 29748788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of Hordeum vulgare and Sinapis alba germination and early growth in response to airborne low-metallic automotive brake wear debris.
    Rajhelová H; Peikertová P; Kuzníková Ľ; Motyka O; Plachá D; Mamulová Kutláková K; Čech Barabaszová K; Thomasová B; Vaculík M; Kukutschová J
    Chemosphere; 2023 Dec; 345():140540. PubMed ID: 37890799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study.
    Kazimirova A; Peikertova P; Barancokova M; Staruchova M; Tulinska J; Vaculik M; Vavra I; Kukutschova J; Filip P; Dusinska M
    Environ Res; 2016 Jul; 148():443-449. PubMed ID: 27131798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxic effects of brake wear particles on epithelial lung cells in vitro.
    Gasser M; Riediker M; Mueller L; Perrenoud A; Blank F; Gehr P; Rothen-Rutishauser B
    Part Fibre Toxicol; 2009 Nov; 6():30. PubMed ID: 19930544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of methods for collecting fallout brake pad wear debris for environmental analysis.
    Sondhi A; Imhoff PT; Dentel SK; Allen HE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(2):239-49. PubMed ID: 20390864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights on non-exhaust emissions: An approach for the chemical characterization of debris generated during braking.
    Russo C; Gautier di Confiengo G; Magnacca G; Faga MG; Apicella B
    Heliyon; 2023 Oct; 9(10):e20672. PubMed ID: 37842568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests.
    Sanders PG; Xu N; Dalka TM; Maricq MM
    Environ Sci Technol; 2003 Sep; 37(18):4060-9. PubMed ID: 14524436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of particulate matter emissions from non-passenger diesel vehicles in Qatar.
    Al-Thani H; Koç M; Fountoukis C; Isaifan RJ
    J Air Waste Manag Assoc; 2020 Feb; 70(2):228-242. PubMed ID: 31971491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automotive brake wear: a review.
    Wahid SMS
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):174-180. PubMed ID: 29110235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper leaching from brake wear debris in standard extraction solutions.
    Hur J; Yim S; Schlautman MA
    J Environ Monit; 2003 Oct; 5(5):837-43. PubMed ID: 14587858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Settled iron-based road dust and its characteristics and possible association with detection in human tissues.
    Čabanová K; Hrabovská K; Matějková P; Dědková K; Tomášek V; Dvořáčková J; Kukutschová J
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2950-2959. PubMed ID: 30499095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity and mutagenicity of low-metallic automotive brake pad materials.
    Malachova K; Kukutschova J; Rybkova Z; Sezimova H; Placha D; Cabanova K; Filip P
    Ecotoxicol Environ Saf; 2016 Sep; 131():37-44. PubMed ID: 27179608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhalation toxicity profiles of particulate matter: a comparison between brake wear with other sources of emission.
    Gerlofs-Nijland ME; Bokkers BGH; Sachse H; Reijnders JJE; Gustafsson M; Boere AJF; Fokkens PFH; Leseman DLAC; Augsburg K; Cassee FR
    Inhal Toxicol; 2019 Feb; 31(3):89-98. PubMed ID: 31066325
    [No Abstract]   [Full Text] [Related]  

  • 16. Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories.
    Zhang J; Peng J; Song C; Ma C; Men Z; Wu J; Wu L; Wang T; Zhang X; Tao S; Gao S; Hopke PK; Mao H
    Environ Pollut; 2020 Nov; 266(Pt 2):115268. PubMed ID: 32836045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of organic ligands and pH on the leaching of copper from brake wear debris in model environmental solutions.
    Hur J; Schlautman MA; Yim S
    J Environ Monit; 2004 Jan; 6(1):89-94. PubMed ID: 14737475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source apportionment of magnetite particles in roadside airborne particulate matter.
    Gonet T; Maher BA; Kukutschová J
    Sci Total Environ; 2021 Jan; 752():141828. PubMed ID: 32889272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts.
    Adamiec E; Jarosz-Krzemińska E; Wieszała R
    Environ Monit Assess; 2016 Jun; 188(6):369. PubMed ID: 27226173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brake wear from vehicles as an important source of diffuse copper pollution.
    Hulskotte JH; van der Gon HA; Visschedijk AJ; Schaap M
    Water Sci Technol; 2007; 56(1):223-31. PubMed ID: 17711019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.