These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 30502191)
1. FT-IR, Vis spectroscopy, color and multivariate analysis for the control of ageing processes in distinctive Spanish wines. Ferreiro-González M; Ruiz-Rodríguez A; Barbero GF; Ayuso J; Álvarez JA; Palma M; Barroso CG Food Chem; 2019 Mar; 277():6-11. PubMed ID: 30502191 [TBL] [Abstract][Full Text] [Related]
2. Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination. Geană EI; Ciucure CT; Apetrei C; Artem V Molecules; 2019 Nov; 24(22):. PubMed ID: 31744212 [TBL] [Abstract][Full Text] [Related]
3. Application of FT-IR spectroscopy to the characterisation and classification of wines, brandies and other distilled drinks. Palma M; Barroso CG Talanta; 2002 Aug; 58(2):265-71. PubMed ID: 18968750 [TBL] [Abstract][Full Text] [Related]
4. Geographic classification of spanish and Australian tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis. Liu L; Cozzolino D; Cynkar WU; Gishen M; Colby CB J Agric Food Chem; 2006 Sep; 54(18):6754-9. PubMed ID: 16939336 [TBL] [Abstract][Full Text] [Related]
5. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine. Romera-Fernández M; Berrueta LA; Garmón-Lobato S; Gallo B; Vicente F; Moreda JM Talanta; 2012 Jan; 88():303-10. PubMed ID: 22265503 [TBL] [Abstract][Full Text] [Related]
6. Combination of visible and mid-infrared spectra for the prediction of chemical parameters of wines. Sen I; Ozturk B; Tokatli F; Ozen B Talanta; 2016 Dec; 161():130-137. PubMed ID: 27769388 [TBL] [Abstract][Full Text] [Related]
7. Discrimination between Shiraz wines from different Australian regions: the role of spectroscopy and chemometrics. Riovanto R; Cynkar WU; Berzaghi P; Cozzolino D J Agric Food Chem; 2011 Sep; 59(18):10356-60. PubMed ID: 21842866 [TBL] [Abstract][Full Text] [Related]
8. Prediction of quality parameters in straw wine by means of FT-IR spectroscopy combined with multivariate data processing. Croce R; Malegori C; Oliveri P; Medici I; Cavaglioni A; Rossi C Food Chem; 2020 Feb; 305():125512. PubMed ID: 31610422 [TBL] [Abstract][Full Text] [Related]
9. Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques. Regmi U; Palma M; Barroso CG Anal Chim Acta; 2012 Jun; 732():137-44. PubMed ID: 22688045 [TBL] [Abstract][Full Text] [Related]
10. Principal component analysis applied to Fourier transform infrared spectroscopy for the design of calibration sets for glycerol prediction models in wine and for the detection and classification of outlier samples. Nieuwoudt HH; Prior BA; Pretorius IS; Manley M; Bauer FF J Agric Food Chem; 2004 Jun; 52(12):3726-35. PubMed ID: 15186089 [TBL] [Abstract][Full Text] [Related]
11. [Application of Fourier transform infrared spectroscopy in identification of wine spoilage]. Zhao XD; Dong DM; Zheng WG; Jiao LZ; Lang Y Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2667-72. PubMed ID: 25739205 [TBL] [Abstract][Full Text] [Related]
12. Use of Fourier transform infrared spectroscopy to create models forecasting the tartaric stability of wines. Malacarne M; Bergamo L; Bertoldi D; Nicolini G; Larcher R Talanta; 2013 Dec; 117():505-10. PubMed ID: 24209373 [TBL] [Abstract][Full Text] [Related]
13. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools. Martelo-Vidal MJ; Vázquez M Food Chem; 2014 Sep; 158():28-34. PubMed ID: 24731310 [TBL] [Abstract][Full Text] [Related]
14. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry. Fernandez K; Agosin E J Agric Food Chem; 2007 Sep; 55(18):7294-300. PubMed ID: 17696445 [TBL] [Abstract][Full Text] [Related]
15. A Methodology Based on FT-IR Data Combined with Random Forest Model to Generate Calle JLP; Ferreiro-González M; Ruiz-Rodríguez A; Barbero GF; Álvarez JÁ; Palma M; Ayuso J Foods; 2021 Jun; 10(6):. PubMed ID: 34207095 [TBL] [Abstract][Full Text] [Related]
16. Comparison of different measurement techniques and variable selection methods for FT-MIR in wine analysis. Friedel M; Patz CD; Dietrich H Food Chem; 2013 Dec; 141(4):4200-7. PubMed ID: 23993606 [TBL] [Abstract][Full Text] [Related]
17. A new FT-IR method combined with multivariate analysis for the classification of vinegars from different raw materials and production processes. Guerrero ED; Mejías RC; Marín RN; Lovillo MP; Barroso CG J Sci Food Agric; 2010 Mar; 90(4):712-8. PubMed ID: 20355103 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines. Cocciardi RA; Ismail AA; Sedman J J Agric Food Chem; 2005 Apr; 53(8):2803-9. PubMed ID: 15826022 [TBL] [Abstract][Full Text] [Related]
19. Direct authentication and composition quantitation of red wines based on Tri-step infrared spectroscopy and multivariate data fusion. Wang S; Hu XZ; Liu YY; Tao NP; Lu Y; Wang XC; Lam W; Lin L; Xu CH Food Chem; 2022 Mar; 372():131259. PubMed ID: 34627087 [TBL] [Abstract][Full Text] [Related]
20. Prediction of total and volatile acidity in red wines by Fourier-transform mid-infrared spectroscopy and iterative predictor weighting. Pizarro C; González-Sáiz JM; Esteban-Díez I; Orio P Anal Bioanal Chem; 2011 Feb; 399(6):2061-72. PubMed ID: 21042907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]