These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69. Peripheral nerve injury and repair. Lee SK; Wolfe SW J Am Acad Orthop Surg; 2000; 8(4):243-52. PubMed ID: 10951113 [TBL] [Abstract][Full Text] [Related]
70. Epineurial Window Is More Efficient in Attracting Axons than Simple Coaptation in a Sutureless (Cyanoacrylate-Bound) Model of End-to-Side Nerve Repair in the Rat Upper Limb: Functional and Morphometric Evidences and Review of the Literature. Papalia I; Magaudda L; Righi M; Ronchi G; Viano N; Geuna S; Colonna MR PLoS One; 2016; 11(2):e0148443. PubMed ID: 26872263 [TBL] [Abstract][Full Text] [Related]
71. A hypothesis on the mechanism of polyethylene glycol (PEG)--mediated membrane fusion. Faisst S; Seibicke S Cell Biol Int Rep; 1987 Jul; 11(7):563. PubMed ID: 3652218 [No Abstract] [Full Text] [Related]
72. Therapeutic augmentation of the growth hormone axis to improve outcomes following peripheral nerve injury. Tuffaha SH; Singh P; Budihardjo JD; Means KR; Higgins JP; Shores JT; Salvatori R; Höke A; Lee WP; Brandacher G Expert Opin Ther Targets; 2016 Oct; 20(10):1259-65. PubMed ID: 27192539 [TBL] [Abstract][Full Text] [Related]
73. Transfer of functional opiate receptors from membranes to recipient cells by polyethylene glycol-induced fusion. Tocqué B; Pfeiffer A; Klee A FEBS Lett; 1987 Oct; 222(2):327-31. PubMed ID: 2820807 [TBL] [Abstract][Full Text] [Related]
74. [Stimulation of Schwann cell growth and axon regeneration of peripheral nerves by the immunosuppressive drug FK 506]. Fansa H; Keilhoff G; Horn T; Altmann S; Wolf G; Schneider W Handchir Mikrochir Plast Chir; 1999 Sep; 31(5):323-9; discussion 330-2. PubMed ID: 10566134 [TBL] [Abstract][Full Text] [Related]
75. Genetic basis of cell-cell fusion mechanisms. Aguilar PS; Baylies MK; Fleissner A; Helming L; Inoue N; Podbilewicz B; Wang H; Wong M Trends Genet; 2013 Jul; 29(7):427-37. PubMed ID: 23453622 [TBL] [Abstract][Full Text] [Related]
76. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Zhao Y; Wang Y; Gong J; Yang L; Niu C; Ni X; Wang Y; Peng S; Gu X; Sun C; Yang Y Biomaterials; 2017 Jul; 134():64-77. PubMed ID: 28456077 [TBL] [Abstract][Full Text] [Related]
77. Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of guinea pigs. Donaldson J; Shi R; Borgens R Neurosurgery; 2002 Jan; 50(1):147-56; discussion 156-7. PubMed ID: 11844245 [TBL] [Abstract][Full Text] [Related]
78. Restriction of axonal retraction and promotion of axonal regeneration by chronically injured neurons after intraspinal treatment with glial cell line-derived neurotrophic factor (GDNF). Dolbeare D; Houle JD J Neurotrauma; 2003 Nov; 20(11):1251-61. PubMed ID: 14651811 [TBL] [Abstract][Full Text] [Related]
79. Phosphatidylserine save-me signals drive functional recovery of severed axons in Abay ZC; Wong MY; Teoh JS; Vijayaraghavan T; Hilliard MA; Neumann B Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10196-E10205. PubMed ID: 29109263 [TBL] [Abstract][Full Text] [Related]
80. The influence of dextran sulfate on influenza A virus fusion with erythrocyte membranes. Herrmann A; Korte T; Arnold K; Hillebrecht B Antiviral Res; 1992 Oct; 19(4):295-311. PubMed ID: 1463322 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]