BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 30502445)

  • 21. Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network.
    Jacobsen N; Deistung A; Timmann D; Goericke SL; Reichenbach JR; Güllmar D
    Z Med Phys; 2019 May; 29(2):128-138. PubMed ID: 30579766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images.
    Naceur MB; Saouli R; Akil M; Kachouri R
    Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated segmentation of deep brain nuclei using convolutional neural networks and susceptibility weighted imaging.
    Beliveau V; Nørgaard M; Birkl C; Seppi K; Scherfler C
    Hum Brain Mapp; 2021 Oct; 42(15):4809-4822. PubMed ID: 34322940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).
    Iqbal S; Ghani MU; Saba T; Rehman A
    Microsc Res Tech; 2018 Apr; 81(4):419-427. PubMed ID: 29356229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.
    Zhao G; Liu F; Oler JA; Meyerand ME; Kalin NH; Birn RM
    Neuroimage; 2018 Jul; 175():32-44. PubMed ID: 29604454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A data augmentation approach to train fully convolutional networks for left ventricle segmentation.
    Lin A; Wu J; Yang X
    Magn Reson Imaging; 2020 Feb; 66():152-164. PubMed ID: 31476360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FastSurfer - A fast and accurate deep learning based neuroimaging pipeline.
    Henschel L; Conjeti S; Estrada S; Diers K; Fischl B; Reuter M
    Neuroimage; 2020 Oct; 219():117012. PubMed ID: 32526386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Testing a deep convolutional neural network for automated hippocampus segmentation in a longitudinal sample of healthy participants.
    Nogovitsyn N; Souza R; Muller M; Srajer A; Hassel S; Arnott SR; Davis AD; Hall GB; Harris JK; Zamyadi M; Metzak PD; Ismail Z; Bray SL; Lebel C; Addington JM; Milev R; Harkness KL; Frey BN; Lam RW; Strother SC; Goldstein BI; Rotzinger S; Kennedy SH; MacQueen GM
    Neuroimage; 2019 Aug; 197():589-597. PubMed ID: 31075395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retinal blood vessel segmentation using fully convolutional network with transfer learning.
    Jiang Z; Zhang H; Wang Y; Ko SB
    Comput Med Imaging Graph; 2018 Sep; 68():1-15. PubMed ID: 29775951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.
    Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X
    Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy.
    Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D
    Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.
    Zhang W; Li R; Deng H; Wang L; Lin W; Ji S; Shen D
    Neuroimage; 2015 Mar; 108():214-24. PubMed ID: 25562829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CEREBRUM: a fast and fully-volumetric Convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI.
    Bontempi D; Benini S; Signoroni A; Svanera M; Muckli L
    Med Image Anal; 2020 May; 62():101688. PubMed ID: 32272345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans.
    Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J
    Elife; 2022 Dec; 11():. PubMed ID: 36546674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Deep Learning Algorithms to Automatically Identify the Brain MRI Contrast: Implications for Managing Large Databases.
    Pizarro R; Assemlal HE; De Nigris D; Elliott C; Antel S; Arnold D; Shmuel A
    Neuroinformatics; 2019 Jan; 17(1):115-130. PubMed ID: 29956131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling.
    Puonti O; Iglesias JE; Van Leemput K
    Neuroimage; 2016 Dec; 143():235-249. PubMed ID: 27612647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Split-Attention U-Net: A Fully Convolutional Network for Robust Multi-Label Segmentation from Brain MRI.
    Lee M; Kim J; Ey Kim R; Kim HG; Oh SW; Lee MK; Wang SM; Kim NY; Kang DW; Rieu Z; Yong JH; Kim D; Lim HK
    Brain Sci; 2020 Dec; 10(12):. PubMed ID: 33322640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model.
    Toğaçar M; Ergen B; Cömert Z
    Med Hypotheses; 2020 Jan; 134():109531. PubMed ID: 31877442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.