BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30503270)

  • 1. Energy efficient walking control for biped robots using interval type-2 fuzzy logic systems and optimized iteration algorithm.
    Yang L; Liu Z; Chen Y
    ISA Trans; 2019 Apr; 87():143-153. PubMed ID: 30503270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.
    Ferreira JP; Crisóstomo MM; Coimbra AP
    IEEE Trans Neural Netw; 2009 Dec; 20(12):1885-97. PubMed ID: 19840908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of Disturbance Recovery Based on MPC and Whole-Body Dynamics Control of Biped Walking.
    Shi X; Gao J; Lu Y; Tian D; Liu Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuzzy neural network quadratic stabilization output feedback control for biped robots via H/sub /spl infin// approach.
    Liu Z; Li C
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(1):67-84. PubMed ID: 18238158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment.
    Hong YD
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-decentralized adaptive fuzzy control for cooperative multirobot systems with H(infinity) motion/internal force tracking performance.
    Lian KY; Chiu CS; Liu P
    IEEE Trans Syst Man Cybern B Cybern; 2002; 32(3):269-80. PubMed ID: 18238126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuzzy neural network approaches for robotic gait synthesis.
    Juang JG
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(4):594-601. PubMed ID: 18252391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parallel heterogeneous policy deep reinforcement learning algorithm for bipedal walking motion design.
    Li C; Li M; Tao C
    Front Neurorobot; 2023; 17():1205775. PubMed ID: 37614967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interval type-2 fuzzy neural network controller for a multivariable anesthesia system based on a hardware-in-the-loop simulation.
    El-Nagar AM; El-Bardini M
    Artif Intell Med; 2014 May; 61(1):1-10. PubMed ID: 24703775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.
    Ali ZA; Wang D; Aamir M
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27171084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A controller based on Optimal Type-2 Fuzzy Logic: systematic design, optimization and real-time implementation.
    Fayek HM; Elamvazuthi I; Perumal N; Venkatesh B
    ISA Trans; 2014 Sep; 53(5):1583-91. PubMed ID: 24962934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.
    Ramesh T; Kumar Panda A; Shiva Kumar S
    ISA Trans; 2015 Jul; 57():262-75. PubMed ID: 25887841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Footprint Planning and Model Predictive Control Based Method for Stable Biped Walking.
    Wang S; Piao S; Leng X; He Z; Bai X; Huazhong L
    Comput Intell Neurosci; 2022; 2022():4781747. PubMed ID: 35401727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.
    Fei J; Zhou J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1599-607. PubMed ID: 22575691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.