BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30503904)

  • 1. Lactobacillus reuteri NAD(P)H oxidase: Properties and coexpression with propanediol-utilization enzymes for enhancing 3-hydroxypropionic acid production from 3-hydroxypropionaldehyde.
    Dishisha T; Sabet-Azad R; Arieta V; Hatti-Kaul R
    J Biotechnol; 2019 Jan; 289():135-143. PubMed ID: 30503904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes.
    Sabet-Azad R; Sardari RR; Linares-Pastén JA; Hatti-Kaul R
    Bioresour Technol; 2015 Mar; 180():214-21. PubMed ID: 25614245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
    Dishisha T; Pereyra LP; Pyo SH; Britton RA; Hatti-Kaul R
    Microb Cell Fact; 2014 May; 13():76. PubMed ID: 24886501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosslinked, cryostructured Lactobacillus reuteri monoliths for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
    Zaushitsyna O; Dishisha T; Hatti-Kaul R; Mattiasson B
    J Biotechnol; 2017 Jan; 241():22-32. PubMed ID: 27829124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol.
    Luo LH; Seo JW; Baek JO; Oh BR; Heo SY; Hong WK; Kim DH; Kim CH
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):697-703. PubMed ID: 20890600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual synthetic pathway for 3-hydroxypropionic acid production in engineered Escherichia coli.
    Honjo H; Tsuruno K; Tatsuke T; Sato M; Hanai T
    J Biosci Bioeng; 2015 Aug; 120(2):199-204. PubMed ID: 25650075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production.
    Stevens MJ; Vollenweider S; Meile L; Lacroix C
    Microb Cell Fact; 2011 Aug; 10():61. PubMed ID: 21812997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coenzyme A-acylating propionaldehyde dehydrogenase (PduP) from Lactobacillus reuteri: kinetic characterization and molecular modeling.
    Sabet-Azad R; Linares-Pastén JA; Torkelson L; Sardari RR; Hatti-Kaul R
    Enzyme Microb Technol; 2013 Sep; 53(4):235-42. PubMed ID: 23931688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli.
    Kim K; Kim SK; Park YC; Seo JH
    Bioresour Technol; 2014 Mar; 156():170-5. PubMed ID: 24502915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Lactobacillus reuteri DSM20016 as a biocatalyst for transformation of longer chain 1,2-diols: Limits with microcompartment.
    Chen L; Hatti-Kaul R
    PLoS One; 2017; 12(9):e0185734. PubMed ID: 28957423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated process for the production of 1,3-propanediol, lactate and 3-hydroxypropionic acid by an engineered Lactobacillus reuteri.
    Suppuram P; Ramakrishnan GG; Subramanian R
    Biosci Biotechnol Biochem; 2019 Apr; 83(4):755-762. PubMed ID: 30582401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.
    Chen L; Bromberger PD; Nieuwenhuiys G; Hatti-Kaul R
    PLoS One; 2016; 11(12):e0168107. PubMed ID: 28030590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Hydroxypropionaldehyde-specific aldehyde dehydrogenase from Bacillus subtilis catalyzes 3-hydroxypropionic acid production in Klebsiella pneumoniae.
    Su M; Li Y; Ge X; Tian P
    Biotechnol Lett; 2015 Mar; 37(3):717-24. PubMed ID: 25409630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of environmental and genetic factors on 3-hydoxypropionaldehyde production by Lactobacillus reuteri.
    Ortiz-Rivera Y; Sánchez-Vega R; Acosta-Muñiz CH; Gutiérrez-Méndez N; León-Félix J; Sepulveda DR
    J Basic Microbiol; 2018 Dec; 58(12):1053-1060. PubMed ID: 30240033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-transformation of Glycerol to 3-Hydroxypropionic Acid Using Resting Cells of Lactobacillus reuteri.
    Ramakrishnan GG; Nehru G; Suppuram P; Balasubramaniyam S; Gulab BR; Subramanian R
    Curr Microbiol; 2015 Oct; 71(4):517-23. PubMed ID: 26204968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol.
    Zhuge B; Zhang C; Fang H; Zhuge J; Permaul K
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2177-84. PubMed ID: 20499228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient poly(3-hydroxypropionate) production from glycerol using Lactobacillus reuteri and recombinant Escherichia coli harboring L. reuteri propionaldehyde dehydrogenase and Chromobacterium sp. PHA synthase genes.
    Linares-Pastén JA; Sabet-Azad R; Pessina L; Sardari RR; Ibrahim MH; Hatti-Kaul R
    Bioresour Technol; 2015 Mar; 180():172-6. PubMed ID: 25600014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum Rebalancing of the 3-Hydroxypropionic Acid Production Pathway from Glycerol in Escherichia coli.
    Lim HG; Noh MH; Jeong JH; Park S; Jung GY
    ACS Synth Biol; 2016 Nov; 5(11):1247-1255. PubMed ID: 27056171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains.
    Burgé G; Saulou-Bérion C; Moussa M; Allais F; Athes V; Spinnler HE
    J Microbiol; 2015 Oct; 53(10):702-10. PubMed ID: 26428921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Hydroxypropionic acid contributes to the antibacterial activity of glycerol metabolism by the food microbe Limosilactobacillus reuteri.
    Liang N; Neužil-Bunešová V; Tejnecký V; Gänzle M; Schwab C
    Food Microbiol; 2021 Sep; 98():103720. PubMed ID: 33875197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.