These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30504629)

  • 21. Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization.
    Milton N; Pikal MJ; Roy ML; Nail SL
    PDA J Pharm Sci Technol; 1997; 51(1):7-16. PubMed ID: 9099059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.
    Goshima H; Do G; Nakagawa K
    J Pharm Sci; 2016 Jun; 105(6):1920-1933. PubMed ID: 27238489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Annealing and Controlled Ice Nucleation on Properties of A Lyophilized 50 mg/ml MAB Formulation.
    Wang J; Searles JA; Torres E; Tchessalov SA; Young AL
    J Pharm Sci; 2022 Sep; 111(9):2639-2644. PubMed ID: 35613684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.
    Patel SM; Bhugra C; Pikal MJ
    AAPS PharmSciTech; 2009; 10(4):1406-11. PubMed ID: 19937284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gap-freezing approach for shortening the lyophilization cycle time of pharmaceutical formulations-demonstration of the concept.
    Kuu WY; Doty MJ; Rebbeck CL; Hurst WS; Cho YK
    J Pharm Sci; 2013 Aug; 102(8):2572-88. PubMed ID: 23728733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studying the morphology of lyophilized protein solids using X-ray micro-CT: effect of post-freeze annealing and controlled nucleation.
    Izutsu K; Yonemochi E; Yomota C; Goda Y; Okuda H
    AAPS PharmSciTech; 2014 Oct; 15(5):1181-8. PubMed ID: 24879291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)' in pharmaceutical lyophilization.
    Searles JA; Carpenter JF; Randolph TW
    J Pharm Sci; 2001 Jul; 90(7):872-87. PubMed ID: 11458336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of ice fog methods and monitoring of controlled nucleation success after freeze-drying.
    Vollrath I; Friess W; Freitag A; Hawe A; Winter G
    Int J Pharm; 2019 Mar; 558():18-28. PubMed ID: 30597272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Process Analytical Technology in Freeze-Drying: Detection of the Secondary Solute + Water Crystallization with Heat Flux Sensors.
    Wang Q; Shalaev E
    AAPS PharmSciTech; 2018 Apr; 19(3):1477-1482. PubMed ID: 29101534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic shelf-scale modeling framework for the freezing stage in freeze-drying processes.
    Deck LT; Ochsenbein DR; Mazzotti M
    Int J Pharm; 2022 Feb; 613():121276. PubMed ID: 34767908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The study of amorphous phase separation in a model polymer phase-separating system using Raman microscopy and a low-temperature stage: effect of cooling rate and nucleation temperature.
    Padilla AM; Chou SG; Luthra S; Pikal MJ
    J Pharm Sci; 2011 Apr; 100(4):1362-76. PubMed ID: 20890911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels.
    Ni X; Ke F; Xiao M; Wu K; Kuang Y; Corke H; Jiang F
    Int J Biol Macromol; 2016 Nov; 92():1130-1135. PubMed ID: 27521845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Looking inside the 'black box': Freezing engineering to ensure the quality of freeze-dried biopharmaceuticals.
    Capozzi LC; Pisano R
    Eur J Pharm Biopharm; 2018 Aug; 129():58-65. PubMed ID: 29787801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.
    Scutellà B; Trelea IC; Bourlès E; Fonseca F; Passot S
    Eur J Pharm Biopharm; 2018 Jul; 128():379-388. PubMed ID: 29746910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse.
    Overcashier DE; Patapoff TW; Hsu CC
    J Pharm Sci; 1999 Jul; 88(7):688-95. PubMed ID: 10393566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved freeze drying efficiency by ice nucleation proteins with ice morphology modification.
    Jin J; Yurkow EJ; Adler D; Lee TC
    Food Res Int; 2018 Apr; 106():90-97. PubMed ID: 29580002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vacuum-Induced Surface Freezing for the Freeze-Drying of the Human Growth Hormone: How Does Nucleation Control Affect Protein Stability?
    Oddone I; Arsiccio A; Duru C; Malik K; Ferguson J; Pisano R; Matejtschuk P
    J Pharm Sci; 2020 Jan; 109(1):254-263. PubMed ID: 31002810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.