These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30504653)

  • 61. Steady-state kinetic and inhibition studies of the mammalian target of rapamycin (mTOR) kinase domain and mTOR complexes.
    Tao Z; Barker J; Shi SD; Gehring M; Sun S
    Biochemistry; 2010 Oct; 49(39):8488-98. PubMed ID: 20804212
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Label-free Single-Molecule Quantification of Rapamycin-induced FKBP-FRB Dimerization for Direct Control of Cellular Mechanotransduction.
    Wang Y; Barnett SFH; Le S; Guo Z; Zhong X; Kanchanawong P; Yan J
    Nano Lett; 2019 Oct; 19(10):7514-7525. PubMed ID: 31466449
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bioluminescence resonance energy transfer: an emerging tool for the detection of protein-protein interaction in living cells.
    Gersting SW; Lotz-Havla AS; Muntau AC
    Methods Mol Biol; 2012; 815():253-63. PubMed ID: 22130997
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae.
    Imamura S; Ishiwata A; Watanabe S; Yoshikawa H; Tanaka K
    Biochem Biophys Res Commun; 2013 Sep; 439(2):264-9. PubMed ID: 23973485
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Facile analysis of protein-protein interactions in living cells by enriched visualization of the p-body.
    Choi M; Baek J; Han SB; Cho S
    BMB Rep; 2018 Oct; 51(10):526-531. PubMed ID: 29898808
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A modular DNA scaffold to study protein-protein interactions at single-molecule resolution.
    Kostrz D; Wayment-Steele HK; Wang JL; Follenfant M; Pande VS; Strick TR; Gosse C
    Nat Nanotechnol; 2019 Oct; 14(10):988-993. PubMed ID: 31548690
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Golgi apparatus maintains its organization independent of the endoplasmic reticulum.
    Pecot MY; Malhotra V
    Mol Biol Cell; 2006 Dec; 17(12):5372-80. PubMed ID: 17050735
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Golgi enzymes do not cycle through the endoplasmic reticulum during protein secretion or mitosis.
    Villeneuve J; Duran J; Scarpa M; Bassaganyas L; Van Galen J; Malhotra V
    Mol Biol Cell; 2017 Jan; 28(1):141-151. PubMed ID: 27807044
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.
    Binkowski BF; Miller RA; Belshaw PJ
    Chem Biol; 2005 Jul; 12(7):847-55. PubMed ID: 16039531
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantitative analysis of dynamic protein-protein interactions in planta by a floated-leaf luciferase complementation imaging (FLuCI) assay using binary Gateway vectors.
    Gehl C; Kaufholdt D; Hamisch D; Bikker R; Kudla J; Mendel RR; Hänsch R
    Plant J; 2011 Aug; 67(3):542-53. PubMed ID: 21481030
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Gaussia Luciferase as a Genetic Fusion Partner with Antibody Fragments for Sensitive Immunoassay Monitoring of Clinical Biomarkers.
    Oyama H; Morita I; Kiguchi Y; Miyake S; Moriuchi A; Akisada T; Niwa T; Kobayashi N
    Anal Chem; 2015 Dec; 87(24):12387-95. PubMed ID: 26625180
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins.
    Schlatter S; Senn C; Fussenegger M
    Biotechnol Bioeng; 2003 Jul; 83(2):210-25. PubMed ID: 12768627
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Circular Permutation Probes for Illuminating Phosphorylation of Estrogen Receptor.
    Kim SB; Tao H
    Methods Mol Biol; 2016; 1461():165-73. PubMed ID: 27424903
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Switching heterotrimeric G protein subunits with a chemical dimerizer.
    Putyrski M; Schultz C
    Chem Biol; 2011 Sep; 18(9):1126-33. PubMed ID: 21944751
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Split-luciferase complementary assay: applications, recent developments, and future perspectives.
    Azad T; Tashakor A; Hosseinkhani S
    Anal Bioanal Chem; 2014 Sep; 406(23):5541-60. PubMed ID: 25002334
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The split luciferase complementation assay.
    Kato N; Jones J
    Methods Mol Biol; 2010; 655():359-76. PubMed ID: 20734273
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Total internal reflectance fluorescence imaging of genetically engineered ryanodine receptor-targeted Ca
    Pahlavan S; Morad M
    Cell Calcium; 2017 Sep; 66():98-110. PubMed ID: 28807154
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of ligand-target pairs from combined libraries of small molecules and unpurified protein targets in cell lysates.
    McGregor LM; Jain T; Liu DR
    J Am Chem Soc; 2014 Feb; 136(8):3264-70. PubMed ID: 24495225
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Azide- and Dye-Conjugated Coelenterazine Analogues for a Multiplex Molecular Imaging Platform.
    Nishihara R; Hoshino E; Kakudate Y; Kishigami S; Iwasawa N; Sasaki SI; Nakajima T; Sato M; Nishiyama S; Citterio D; Suzuki K; Kim SB
    Bioconjug Chem; 2018 Jun; 29(6):1922-1931. PubMed ID: 29767512
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Engineering Optogenetic Protein Analogs.
    Liu B; Marston DJ; Hahn KM
    Methods Mol Biol; 2020; 2173():113-126. PubMed ID: 32651913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.