These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30505942)

  • 1. Label-Free Quantitative Proteomics of Lysine Acetylome Identifies Substrates of Gcn5 in Magnaporthe oryzae Autophagy and Epigenetic Regulation.
    Liang M; Zhang S; Dong L; Kou Y; Lin C; Dai W; Zhang LH; Deng YZ
    mSystems; 2018; 3(6):. PubMed ID: 30505942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae.
    Zhang S; Liang M; Naqvi NI; Lin C; Qian W; Zhang LH; Deng YZ
    Autophagy; 2017 Aug; 13(8):1318-1330. PubMed ID: 28594263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae.
    He M; Xu Y; Chen J; Luo Y; Lv Y; Su J; Kershaw MJ; Li W; Wang J; Yin J; Zhu X; Liu X; Chern M; Ma B; Wang J; Qin P; Chen W; Wang Y; Wang W; Ren Z; Wu X; Li P; Li S; Peng Y; Lin F; Talbot NJ; Chen X
    Autophagy; 2018; 14(9):1543-1561. PubMed ID: 29929416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate functional appressorium formation and pathogenicity in
    Yin Z; Chen C; Yang J; Feng W; Liu X; Zuo R; Wang J; Yang L; Zhong K; Gao C; Zhang H; Zheng X; Wang P; Zhang Z
    Autophagy; 2019 Jul; 15(7):1234-1257. PubMed ID: 30776962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A MYST family histone acetyltransferase, MoSAS3, is required for development and pathogenicity in the rice blast fungus.
    Dubey A; Lee J; Kwon S; Lee YH; Jeon J
    Mol Plant Pathol; 2019 Nov; 20(11):1491-1505. PubMed ID: 31364260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Histone Deacetylases MoRpd3 and MoHst4 Regulate Growth, Conidiation, and Pathogenicity in the Rice Blast Fungus Magnaporthe oryzae.
    Lin C; Cao X; Qu Z; Zhang S; Naqvi NI; Deng YZ
    mSphere; 2021 Jun; 6(3):e0011821. PubMed ID: 34190584
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Deng S; Sun W; Dong L; Cui G; Deng YZ
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31484736
    [No Abstract]   [Full Text] [Related]  

  • 8. A vacuolar glucoamylase, Sga1, participates in glycogen autophagy for proper asexual differentiation in Magnaporthe oryzae.
    Deng YZ; Naqvi NI
    Autophagy; 2010 May; 6(4):455-61. PubMed ID: 20383057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae.
    Deng YZ; Ramos-Pamplona M; Naqvi NI
    Autophagy; 2009 Jan; 5(1):33-43. PubMed ID: 19115483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Autophagy Machinery in
    Asif N; Lin F; Li L; Zhu X; Nawaz S
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the Histone Acetyltransferase Rtt109 in Development and Pathogenicity of the Rice Blast Fungus.
    Kwon S; Lee J; Jeon J; Kim S; Park SY; Jeon J; Lee YH
    Mol Plant Microbe Interact; 2018 Nov; 31(11):1200-1210. PubMed ID: 29856240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomic analyses reveal that the regulators of G-protein signaling proteins regulate amino acid metabolism of the rice blast fungus Magnaporthe oryzae.
    Zhang H; Ma H; Xie X; Ji J; Dong Y; Du Y; Tang W; Zheng X; Wang P; Zhang Z
    Proteomics; 2014 Nov; 14(21-22):2508-22. PubMed ID: 25236475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPM1 encoding a vacuole-localized protease is required for infection-related autophagy of the rice blast fungus Magnaporthe oryzae.
    Saitoh H; Fujisawa S; Ito A; Mitsuoka C; Berberich T; Tosa Y; Asakura M; Takano Y; Terauchi R
    FEMS Microbiol Lett; 2009 Nov; 300(1):115-21. PubMed ID: 19765082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SUMOylation is required for fungal development and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Lim YJ; Kim KT; Lee YH
    Mol Plant Pathol; 2018 Sep; 19(9):2134-2148. PubMed ID: 29633464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Subunit of ESCRT-III, MoIst1, Is Involved in Fungal Development, Pathogenicity, and Autophagy in
    Sun L; Qian H; Wu M; Zhao W; Liu M; Wei Y; Zhu X; Li L; Lu J; Lin F; Liu X
    Front Plant Sci; 2022; 13():845139. PubMed ID: 35463448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Liu XH; Zhao YH; Zhu XM; Zeng XQ; Huang LY; Dong B; Su ZZ; Wang Y; Lu JP; Lin FC
    Sci Rep; 2017 Jan; 7():40018. PubMed ID: 28067330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis.
    Pham KT; Inoue Y; Vu BV; Nguyen HH; Nakayashiki T; Ikeda K; Nakayashiki H
    PLoS Genet; 2015 Jul; 11(7):e1005385. PubMed ID: 26230995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System-Wide Characterization of MoArf GTPase Family Proteins and Adaptor Protein MoGga1 Involved in the Development and Pathogenicity of Magnaporthe oryzae.
    Zhang S; Yang L; Li L; Zhong K; Wang W; Liu M; Li Y; Liu X; Yu R; He J; Zhang H; Zheng X; Wang P; Zhang Z
    mBio; 2019 Oct; 10(5):. PubMed ID: 31615964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale identification of lysine acetylated proteins in vegetative hyphae of the rice blast fungus.
    Sun X; Li Z; Liu H; Yang J; Liang W; Peng YL; Huang J
    Sci Rep; 2017 Nov; 7(1):15316. PubMed ID: 29127393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development.
    Franck WL; Gokce E; Randall SM; Oh Y; Eyre A; Muddiman DC; Dean RA
    J Proteome Res; 2015 Jun; 14(6):2408-24. PubMed ID: 25926025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.