These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 30506040)
1. Highly Photoconductive InP Quantum Dots Films and Solar Cells. Crisp RW; Kirkwood N; Grimaldi G; Kinge S; Siebbeles LDA; Houtepen AJ ACS Appl Energy Mater; 2018 Nov; 1(11):6569-6576. PubMed ID: 30506040 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the Dermal Toxicity of InZnP Quantum Dots Before and After Accelerated Weathering: Toward a Safer-By-Design Strategy. Dussert F; Wegner KD; Moriscot C; Gallet B; Jouneau PH; Reiss P; Carriere M Front Toxicol; 2021; 3():636976. PubMed ID: 35295141 [TBL] [Abstract][Full Text] [Related]
3. InP Quantum Dots: Synthesis and Lighting Applications. Chen B; Li D; Wang F Small; 2020 Aug; 16(32):e2002454. PubMed ID: 32613755 [TBL] [Abstract][Full Text] [Related]
4. Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots. Pietra F; Kirkwood N; De Trizio L; Hoekstra AW; Kleibergen L; Renaud N; Koole R; Baesjou P; Manna L; Houtepen AJ Chem Mater; 2017 Jun; 29(12):5192-5199. PubMed ID: 28706347 [TBL] [Abstract][Full Text] [Related]
5. Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes. Jiang X; Fan Z; Luo L; Wang L Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630176 [TBL] [Abstract][Full Text] [Related]
6. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots. Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096 [TBL] [Abstract][Full Text] [Related]
7. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots. Sung YM; Kim TG; Yun DJ; Lim M; Ko DS; Jung C; Won N; Park S; Jeon WS; Lee HS; Kim JH; Jun S; Sul S; Hwang S Small; 2021 Dec; 17(52):e2102792. PubMed ID: 34636144 [TBL] [Abstract][Full Text] [Related]
8. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. Lin Q; Yun HJ; Liu W; Song HJ; Makarov NS; Isaienko O; Nakotte T; Chen G; Luo H; Klimov VI; Pietryga JM J Am Chem Soc; 2017 May; 139(19):6644-6653. PubMed ID: 28431206 [TBL] [Abstract][Full Text] [Related]
9. Charge-Transport Mechanisms in CuInSe Yun HJ; Lim J; Fuhr AS; Makarov NS; Keene S; Law M; Pietryga JM; Klimov VI ACS Nano; 2018 Dec; 12(12):12587-12596. PubMed ID: 30495927 [TBL] [Abstract][Full Text] [Related]
10. Phenethylamine ligand engineering of red InP quantum dots for improving the efficiency of quantum dot light-emitting diodes. Jiang W; Kim B; Chae H Opt Lett; 2020 Oct; 45(20):5800-5803. PubMed ID: 33057288 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy. Yang X; Yang J; Ullah MI; Xia Y; Liang G; Wang S; Zhang J; Hsu HY; Song H; Tang J ACS Appl Mater Interfaces; 2020 Sep; 12(37):42217-42225. PubMed ID: 32805951 [TBL] [Abstract][Full Text] [Related]
12. Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction. Bang J; Das S; Yu EJ; Kim K; Lim H; Kim S; Hong JW Nano Lett; 2020 Sep; 20(9):6263-6271. PubMed ID: 32813529 [TBL] [Abstract][Full Text] [Related]
13. Metal-Solvent Complex Formation at the Surface of InP Colloidal Quantum Dots. Hai Y; Gahlot K; Tanchev M; Mutalik S; Tekelenburg EK; Hong J; Ahmadi M; Piveteau L; Loi MA; Protesescu L J Am Chem Soc; 2024 May; 146(18):12808-12818. PubMed ID: 38668701 [TBL] [Abstract][Full Text] [Related]
14. Surface Engineered Colloidal Quantum Dots for Complete Green Process. Hahm D; Park J; Jeong I; Rhee S; Lee T; Lee C; Chung S; Bae WK; Lee S ACS Appl Mater Interfaces; 2020 Mar; 12(9):10563-10570. PubMed ID: 32048828 [TBL] [Abstract][Full Text] [Related]
16. Surface passivation extends single and biexciton lifetimes of InP quantum dots. Yang W; Yang Y; Kaledin AL; He S; Jin T; McBride JR; Lian T Chem Sci; 2020 Jun; 11(22):5779-5789. PubMed ID: 32832054 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and Processing Strategy for High-Bandgap PbS Quantum Dots: A Promising Candidate for Harvesting High-Energy Photons in Solar Cells. Shinde DD; Sharma A; Dambhare NV; Mahajan C; Biswas A; Mitra A; Rath AK ACS Appl Mater Interfaces; 2024 Aug; 16(32):42522-42533. PubMed ID: 39087921 [TBL] [Abstract][Full Text] [Related]
18. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. Proppe AH; Xu J; Sabatini RP; Fan JZ; Sun B; Hoogland S; Kelley SO; Voznyy O; Sargent EH Nano Lett; 2018 Nov; 18(11):7052-7059. PubMed ID: 30359524 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Efficiency of InP-Based Red Quantum Dot Light-Emitting Diodes. Li D; Kristal B; Wang Y; Feng J; Lu Z; Yu G; Chen Z; Li Y; Li X; Xu X ACS Appl Mater Interfaces; 2019 Sep; 11(37):34067-34075. PubMed ID: 31441639 [TBL] [Abstract][Full Text] [Related]
20. Triplet Sensitization and Photon Upconversion Using InP-Based Quantum Dots. Lai R; Sang Y; Zhao Y; Wu K J Am Chem Soc; 2020 Nov; 142(47):19825-19829. PubMed ID: 33170006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]