BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30506040)

  • 1. Highly Photoconductive InP Quantum Dots Films and Solar Cells.
    Crisp RW; Kirkwood N; Grimaldi G; Kinge S; Siebbeles LDA; Houtepen AJ
    ACS Appl Energy Mater; 2018 Nov; 1(11):6569-6576. PubMed ID: 30506040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the Dermal Toxicity of InZnP Quantum Dots Before and After Accelerated Weathering: Toward a Safer-By-Design Strategy.
    Dussert F; Wegner KD; Moriscot C; Gallet B; Jouneau PH; Reiss P; Carriere M
    Front Toxicol; 2021; 3():636976. PubMed ID: 35295141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. InP Quantum Dots: Synthesis and Lighting Applications.
    Chen B; Li D; Wang F
    Small; 2020 Aug; 16(32):e2002454. PubMed ID: 32613755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots.
    Pietra F; Kirkwood N; De Trizio L; Hoekstra AW; Kleibergen L; Renaud N; Koole R; Baesjou P; Manna L; Houtepen AJ
    Chem Mater; 2017 Jun; 29(12):5192-5199. PubMed ID: 28706347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes.
    Jiang X; Fan Z; Luo L; Wang L
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots.
    Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots.
    Sung YM; Kim TG; Yun DJ; Lim M; Ko DS; Jung C; Won N; Park S; Jeon WS; Lee HS; Kim JH; Jun S; Sul S; Hwang S
    Small; 2021 Dec; 17(52):e2102792. PubMed ID: 34636144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films.
    Lin Q; Yun HJ; Liu W; Song HJ; Makarov NS; Isaienko O; Nakotte T; Chen G; Luo H; Klimov VI; Pietryga JM
    J Am Chem Soc; 2017 May; 139(19):6644-6653. PubMed ID: 28431206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-Transport Mechanisms in CuInSe
    Yun HJ; Lim J; Fuhr AS; Makarov NS; Keene S; Law M; Pietryga JM; Klimov VI
    ACS Nano; 2018 Dec; 12(12):12587-12596. PubMed ID: 30495927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenethylamine ligand engineering of red InP quantum dots for improving the efficiency of quantum dot light-emitting diodes.
    Jiang W; Kim B; Chae H
    Opt Lett; 2020 Oct; 45(20):5800-5803. PubMed ID: 33057288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy.
    Yang X; Yang J; Ullah MI; Xia Y; Liang G; Wang S; Zhang J; Hsu HY; Song H; Tang J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42217-42225. PubMed ID: 32805951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction.
    Bang J; Das S; Yu EJ; Kim K; Lim H; Kim S; Hong JW
    Nano Lett; 2020 Sep; 20(9):6263-6271. PubMed ID: 32813529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Engineered Colloidal Quantum Dots for Complete Green Process.
    Hahm D; Park J; Jeong I; Rhee S; Lee T; Lee C; Chung S; Bae WK; Lee S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10563-10570. PubMed ID: 32048828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots.
    Mutlugun E; Hernandez-Martinez PL; Eroglu C; Coskun Y; Erdem T; Sharma VK; Unal E; Panda SK; Hickey SG; Gaponik N; Eychmüller A; Demir HV
    Nano Lett; 2012 Aug; 12(8):3986-93. PubMed ID: 22783904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface passivation extends single and biexciton lifetimes of InP quantum dots.
    Yang W; Yang Y; Kaledin AL; He S; Jin T; McBride JR; Lian T
    Chem Sci; 2020 Jun; 11(22):5779-5789. PubMed ID: 32832054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids.
    Proppe AH; Xu J; Sabatini RP; Fan JZ; Sun B; Hoogland S; Kelley SO; Voznyy O; Sargent EH
    Nano Lett; 2018 Nov; 18(11):7052-7059. PubMed ID: 30359524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Efficiency of InP-Based Red Quantum Dot Light-Emitting Diodes.
    Li D; Kristal B; Wang Y; Feng J; Lu Z; Yu G; Chen Z; Li Y; Li X; Xu X
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34067-34075. PubMed ID: 31441639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplet Sensitization and Photon Upconversion Using InP-Based Quantum Dots.
    Lai R; Sang Y; Zhao Y; Wu K
    J Am Chem Soc; 2020 Nov; 142(47):19825-19829. PubMed ID: 33170006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness.
    Zhang H; Ma X; Lin Q; Zeng Z; Wang H; Li LS; Shen H; Jia Y; Du Z
    J Phys Chem Lett; 2020 Feb; 11(3):960-967. PubMed ID: 31957438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.