BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30506203)

  • 1. Next Generation Sequencing of Prenatal Structural Chromosomal Rearrangements Using Large-Insert Libraries.
    Currall BB; Antolik CW; Collins RL; Talkowski ME
    Methods Mol Biol; 2019; 1885():251-265. PubMed ID: 30506203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Chromosomal Rearrangements Require Nucleotide-Level Resolution: Lessons from Next-Generation Sequencing in Prenatal Diagnosis.
    Ordulu Z; Kammin T; Brand H; Pillalamarri V; Redin CE; Collins RL; Blumenthal I; Hanscom C; Pereira S; Bradley I; Crandall BF; Gerrol P; Hayden MA; Hussain N; Kanengisser-Pines B; Kantarci S; Levy B; Macera MJ; Quintero-Rivera F; Spiegel E; Stevens B; Ulm JE; Warburton D; Wilkins-Haug LE; Yachelevich N; Gusella JF; Talkowski ME; Morton CC
    Am J Hum Genet; 2016 Nov; 99(5):1015-1033. PubMed ID: 27745839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of fetal submicroscopic chromosomal abnormalities in failed array CGH samples: copy number by sequencing as an alternative to microarrays for invasive fetal testing.
    Cohen K; Tzika A; Wood H; Berri S; Roberts P; Mason G; Sheridan E
    Ultrasound Obstet Gynecol; 2015 Apr; 45(4):394-401. PubMed ID: 25510919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Expert consensus on the test development and preliminary implementation of whole genome sequencing for fetal structural abnormalities].
    Cyto And Genomics Group Of Medical Genetics Branch Of Chinese Medical Association ; Writing Group For Expert Consensus On Whole-Genome Sequencing In Prenatal Diagnosis ; Wang Y; Zhu X; Sun L; Tang X; Liu N; Kong X
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2024 Jun; 41(6):677-684. PubMed ID: 38818551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PacBio-LITS: a large-insert targeted sequencing method for characterization of human disease-associated chromosomal structural variations.
    Wang M; Beck CR; English AC; Meng Q; Buhay C; Han Y; Doddapaneni HV; Yu F; Boerwinkle E; Lupski JR; Muzny DM; Gibbs RA
    BMC Genomics; 2015 Mar; 16(1):214. PubMed ID: 25887218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole Genome Library Construction for Next Generation Sequencing.
    Keats JJ; Cuyugan L; Adkins J; Liang WS
    Methods Mol Biol; 2018; 1706():151-161. PubMed ID: 29423797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability.
    Lindstrand A; Eisfeldt J; Pettersson M; Carvalho CMB; Kvarnung M; Grigelioniene G; Anderlid BM; Bjerin O; Gustavsson P; Hammarsjö A; Georgii-Hemming P; Iwarsson E; Johansson-Soller M; Lagerstedt-Robinson K; Lieden A; Magnusson M; Martin M; Malmgren H; Nordenskjöld M; Norling A; Sahlin E; Stranneheim H; Tham E; Wincent J; Ygberg S; Wedell A; Wirta V; Nordgren A; Lundin J; Nilsson D
    Genome Med; 2019 Nov; 11(1):68. PubMed ID: 31694722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Structural Variation: Mechanisms of Chromosome Rearrangements.
    Weckselblatt B; Rudd MK
    Trends Genet; 2015 Oct; 31(10):587-599. PubMed ID: 26209074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SVAtools for junction detection of genome-wide chromosomal rearrangements by mate-pair sequencing (MPseq).
    Johnson SH; Smadbeck JB; Smoley SA; Gaitatzes A; Murphy SJ; Harris FR; Drucker TM; Zenka RM; Pitel BA; Rowsey RA; Hoppman NL; Aypar U; Sukov WR; Jenkins RB; Feldman AL; Kearney HM; Vasmatzis G
    Cancer Genet; 2018 Feb; 221():1-18. PubMed ID: 29405991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long insert whole genome sequencing for copy number variant and translocation detection.
    Liang WS; Aldrich J; Tembe W; Kurdoglu A; Cherni I; Phillips L; Reiman R; Baker A; Weiss GJ; Carpten JD; Craig DW
    Nucleic Acids Res; 2014 Jan; 42(2):e8. PubMed ID: 24071583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Chaos (Multiple Copy Number Variations and Structural Reorganization) Detected in Two Prenatal Cases.
    Lloveras E; Canellas A; Plaja A; Barranco L; Fernández D; Mendez B; Piqué M; de la Iglesia C; Palau N; Costa M; Herrero M; Yeste D; Auge M; Puig L; Pérez C
    Cytogenet Genome Res; 2021; 161(5):236-242. PubMed ID: 34274931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative to array-based diagnostics: a prospectively recruited cohort, comparing arrayCGH to next-generation sequencing to evaluate foetal structural abnormalities.
    Walker L; Watson CM; Hewitt S; Crinnion LA; Bonthron DT; Cohen KE
    J Obstet Gynaecol; 2019 Apr; 39(3):328-334. PubMed ID: 30714504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A survey of undetected, clinically relevant chromosome abnormalities when replacing postnatal karyotyping by Whole Genome Sequencing.
    Hochstenbach R; van Binsbergen E; Schuring-Blom H; Buijs A; Ploos van Amstel HK
    Eur J Med Genet; 2019 Sep; 62(9):103543. PubMed ID: 30248410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of large-insert jumping libraries for structural variant detection using Illumina sequencing.
    Hanscom C; Talkowski M
    Curr Protoc Hum Genet; 2014 Jan; 80():7.22.1-7.22.9. PubMed ID: 24789519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing.
    Zhu X; Li J; Ru T; Wang Y; Xu Y; Yang Y; Wu X; Cram DS; Hu Y
    Prenat Diagn; 2016 Apr; 36(4):321-7. PubMed ID: 26833920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.
    Collins RL; Brand H; Redin CE; Hanscom C; Antolik C; Stone MR; Glessner JT; Mason T; Pregno G; Dorrani N; Mandrile G; Giachino D; Perrin D; Walsh C; Cipicchio M; Costello M; Stortchevoi A; An JY; Currall BB; Seabra CM; Ragavendran A; Margolin L; Martinez-Agosto JA; Lucente D; Levy B; Sanders SJ; Wapner RJ; Quintero-Rivera F; Kloosterman W; Talkowski ME
    Genome Biol; 2017 Mar; 18(1):36. PubMed ID: 28260531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders.
    Brand H; Pillalamarri V; Collins RL; Eggert S; O'Dushlaine C; Braaten EB; Stone MR; Chambert K; Doty ND; Hanscom C; Rosenfeld JA; Ditmars H; Blais J; Mills R; Lee C; Gusella JF; McCarroll S; Smoller JW; Talkowski ME; Doyle AE
    Am J Hum Genet; 2014 Oct; 95(4):454-61. PubMed ID: 25279985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust approach for blind detection of balanced chromosomal rearrangements with whole-genome low-coverage sequencing.
    Dong Z; Jiang L; Yang C; Hu H; Wang X; Chen H; Choy KW; Hu H; Dong Y; Hu B; Xu J; Long Y; Cao S; Chen H; Wang WJ; Jiang H; Xu F; Yao H; Xu X; Liang Z
    Hum Mutat; 2014 May; 35(5):625-36. PubMed ID: 24610732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical diagnosis by whole-genome sequencing of a prenatal sample.
    Talkowski ME; Ordulu Z; Pillalamarri V; Benson CB; Blumenthal I; Connolly S; Hanscom C; Hussain N; Pereira S; Picker J; Rosenfeld JA; Shaffer LG; Wilkins-Haug LE; Gusella JF; Morton CC
    N Engl J Med; 2012 Dec; 367(23):2226-32. PubMed ID: 23215558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balanced Chromosomal Rearrangement Detection by Low-Pass Whole-Genome Sequencing.
    Dong Z; Ye L; Yang Z; Chen H; Yuan J; Wang H; Guo X; Li Y; Wang J; Chen F; Cheung SW; Morton CC; Jiang H; Choy KW
    Curr Protoc Hum Genet; 2018 Jan; 96():8.18.1-8.18.16. PubMed ID: 29364520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.