These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 30506400)
1. Global insight into the distribution of velvet-like B protein in Cochliobolus species and implication in pathogenicity and fungicide resistance. Bengyella L World J Microbiol Biotechnol; 2018 Dec; 34(12):187. PubMed ID: 30506400 [TBL] [Abstract][Full Text] [Related]
2. Global invasive Cochliobolus species: cohort of destroyers with implications in food losses and insecurity in the twenty-first century. Bengyella L; Yekwa EL; Nawaz K; Iftikhar S; Tambo E; Alisoltani A; Feto NA; Roy P Arch Microbiol; 2018 Jan; 200(1):119-135. PubMed ID: 28831526 [TBL] [Abstract][Full Text] [Related]
3. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize. Lu S; Gillian Turgeon B; Edwards MC Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492 [TBL] [Abstract][Full Text] [Related]
4. Virulence, Host-Selective Toxin Production, and Development of Three Cochliobolus Phytopathogens Lacking the Sfp-Type 4'-Phosphopantetheinyl Transferase Ppt1. Zainudin NA; Condon B; De Bruyne L; Van Poucke C; Bi Q; Li W; Höfte M; Turgeon BG Mol Plant Microbe Interact; 2015 Oct; 28(10):1130-41. PubMed ID: 26168137 [TBL] [Abstract][Full Text] [Related]
5. Iron, oxidative stress, and virulence: roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus. Zhang N; MohdZainudin NA; Scher K; Condon BJ; Horwitz BA; Turgeon BG Mol Plant Microbe Interact; 2013 Dec; 26(12):1473-85. PubMed ID: 23980626 [TBL] [Abstract][Full Text] [Related]
6. Six new genes required for production of T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize. Inderbitzin P; Asvarak T; Turgeon BG Mol Plant Microbe Interact; 2010 Apr; 23(4):458-72. PubMed ID: 20192833 [TBL] [Abstract][Full Text] [Related]
7. RELATIONSHIP BETWEEN PATHOGENICITY AND FUNGICIDE TOLERANCE IN THE WHEAT PATHOGEN MYCOSPHAERELLA GRAMINICOLA. Siah A; Deweer C; Tisserant B; Randoux B; Halama P; Reignault P Commun Agric Appl Biol Sci; 2015; 80(3):589-93. PubMed ID: 27141758 [TBL] [Abstract][Full Text] [Related]
8. Involvement of a velvet protein ClVelB in the regulation of vegetative differentiation, oxidative stress response, secondary metabolism, and virulence in Curvularia lunata. Gao JX; Yu CJ; Wang M; Sun JN; Li YQ; Chen J Sci Rep; 2017 Apr; 7():46054. PubMed ID: 28393907 [TBL] [Abstract][Full Text] [Related]
9. Insertional mutagenesis and cloning of the gene required for the biosynthesis of the non-host-specific toxin in Cochliobolus lunatus that causes maize leaf spot. Gao JX; Liu T; Chen J Phytopathology; 2014 Apr; 104(4):332-9. PubMed ID: 24134718 [TBL] [Abstract][Full Text] [Related]
10. Comparative chemical screening and genetic analysis reveal tentoxin as a new virulence factor in Cochliobolus miyabeanus, the causal agent of brown spot disease on rice. De Bruyne L; Van Poucke C; Di Mavungu DJ; Zainudin NA; Vanhaecke L; De Vleesschauwer D; Turgeon BG; De Saeger S; Höfte M Mol Plant Pathol; 2016 Aug; 17(6):805-17. PubMed ID: 26456797 [TBL] [Abstract][Full Text] [Related]
11. Resistance risk assessment for fludioxonil in Bipolaris maydis. Han X; Zhao H; Ren W; Lv C; Chen C Pestic Biochem Physiol; 2017 Jun; 139():32-39. PubMed ID: 28595919 [TBL] [Abstract][Full Text] [Related]
13. Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Lee BN; Kroken S; Chou DY; Robbertse B; Yoder OC; Turgeon BG Eukaryot Cell; 2005 Mar; 4(3):545-55. PubMed ID: 15755917 [TBL] [Abstract][Full Text] [Related]
14. Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus. Izumitsu K; Yoshimi A; Tanaka C Eukaryot Cell; 2007 Feb; 6(2):171-81. PubMed ID: 17158737 [TBL] [Abstract][Full Text] [Related]
15. Dic2 and Dic3 loci confer osmotic adaptation and fungicidal sensitivity independent of the HOG pathway in Cochliobolus heterostrophus. Izumitsu K; Yoshimi A; Hamada S; Morita A; Saitoh Y; Tanaka C Mycol Res; 2009 Oct; 113(Pt 10):1208-15. PubMed ID: 19682577 [TBL] [Abstract][Full Text] [Related]
16. Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Turgeon BG; Baker SE Adv Genet; 2007; 57():219-61. PubMed ID: 17352906 [TBL] [Abstract][Full Text] [Related]
17. Cochliobolus heterostrophus Llm1 - a Lae1-like methyltransferase regulates T-toxin production, virulence, and development. Bi Q; Wu D; Zhu X; Gillian Turgeon B Fungal Genet Biol; 2013 Feb; 51():21-33. PubMed ID: 23261970 [TBL] [Abstract][Full Text] [Related]
18. Cochliobolus lunatus colonizes potato by adopting different invasion strategies on cultivars: New insights on temperature dependent-virulence. Louis B; Waikhom SD; Jose RC; Goyari S; Talukdar NC; Roy P Microb Pathog; 2015 Oct; 87():30-9. PubMed ID: 26205908 [TBL] [Abstract][Full Text] [Related]
19. Infection-specific transcriptional patterns of the maize pathogen Cochliobolus heterostrophus unravel genes involved in asexual development and virulence. Yu H; Zhang J; Fan J; Jia W; Lv Y; Pan H; Zhang X Mol Plant Pathol; 2024 Jan; 25(1):e13413. PubMed ID: 38279855 [TBL] [Abstract][Full Text] [Related]
20. Coordinated and independent functions of velvet-complex genes in fungal development and virulence of the fungal cereal pathogen Cochliobolus sativus. Wang R; Leng Y; Shrestha S; Zhong S Fungal Biol; 2016 Aug; 120(8):948-960. PubMed ID: 27521627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]