These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30506664)
1. An Aggregation-induced Emission Probe Based on Host-Guest Inclusion Composed of the Tetraphenylethylene Motif and γ-Cyclodextrin for the Detection of α-Amylase. Shi J; Deng Q; Li Y; Chai Z; Wan C; Shangguan H; Li L; Tang B Chem Asian J; 2019 Mar; 14(6):847-852. PubMed ID: 30506664 [TBL] [Abstract][Full Text] [Related]
2. A Rapid and Ultrasensitive Tetraphenylethylene-Based Probe with Aggregation-Induced Emission for Direct Detection of α-Amylase in Human Body Fluids. Shi J; Deng Q; Li Y; Zheng M; Chai Z; Wan C; Zheng Z; Li L; Huang F; Tang B Anal Chem; 2018 Nov; 90(22):13775-13782. PubMed ID: 30387994 [TBL] [Abstract][Full Text] [Related]
3. Kinetic difference between hydrolyses of gamma-cyclodextrin by human salivary and pancreatic alpha-amylases. Marshall JJ; Miwa I Biochim Biophys Acta; 1981 Sep; 661(1):142-7. PubMed ID: 6170334 [TBL] [Abstract][Full Text] [Related]
4. Sensitive detection of α-amylase based on host-guest inclusion system of γ-cyclodextrin and dansyl-derived diphenylalanine. Liu Y; Jiao Y; Xiong L; Wei G; Xu B; Zhang G; Wang C; Zhao L Spectrochim Acta A Mol Biomol Spectrosc; 2025 Feb; 326():125291. PubMed ID: 39427389 [TBL] [Abstract][Full Text] [Related]
5. Rapid detection of hypobromous acid by a tetraphenylethylene-based turn-on fluorescent AIE probe and its applications. Peng M; Zhang L; Yao X; Su YB; Lu Y; Peng Y; Wang YW Anal Chim Acta; 2024 Jun; 1307():342642. PubMed ID: 38719399 [TBL] [Abstract][Full Text] [Related]
6. Monomer emission and aggregate emission of TPE derivatives in the presence of γ-cyclodextrin. Song S; Zheng HF; Li DM; Wang JH; Feng HT; Zhu ZH; Chen YC; Zheng YS Org Lett; 2014 Apr; 16(8):2170-3. PubMed ID: 24702178 [TBL] [Abstract][Full Text] [Related]
7. A liquid crystals-based sensing platform for detection of α-amylase coupled with destruction of host-guest interaction. Ma H; Kang Q; Wang T; Yu L Colloids Surf B Biointerfaces; 2019 Jan; 173():616-622. PubMed ID: 30366290 [TBL] [Abstract][Full Text] [Related]
8. Fluorogenic Monitoring of α-Amylase in Human Urine for Straightforward Diagnosis of Pancreatic Diseases. Choi H; Kim S; Park T; Lee SH Chem Asian J; 2024 Oct; 19(19):e202400505. PubMed ID: 38959126 [TBL] [Abstract][Full Text] [Related]
9. Preparation of a new fluorogenic substrate of alpha-amylases and a simple alpha-amylase assay by HPLC. Omichi K; Ikenaka T J Biochem; 1983 Apr; 93(4):1055-60. PubMed ID: 6190796 [TBL] [Abstract][Full Text] [Related]
10. Rapid and ultrasensitive activity detection of α-amylase based on γ-cyclodextrin crosslinked metal-organic framework nanozyme. Chen L; Huang W; Hao M; Yang F; Shen H; Yu S; Wang L Int J Biol Macromol; 2023 Jul; 242(Pt 2):124881. PubMed ID: 37201881 [TBL] [Abstract][Full Text] [Related]
11. A 2 : 2 stilbeneboronic acid-γ-cyclodextrin fluorescent ensemble highly selective for glucose in aqueous solutions. Wu X; Lin LR; Huang YJ; Li Z; Jiang YB Chem Commun (Camb); 2012 May; 48(36):4362-4. PubMed ID: 22447048 [TBL] [Abstract][Full Text] [Related]
12. γ-Cyclodextrin. Saokham P; Loftsson T Int J Pharm; 2017 Jan; 516(1-2):278-292. PubMed ID: 27989822 [TBL] [Abstract][Full Text] [Related]
13. Direct assay for alpha-amylase using fluorophore-modified cyclodextrins. Murayama T; Tanabe T; Ikeda H; Ueno A Bioorg Med Chem; 2006 Jun; 14(11):3691-6. PubMed ID: 16464599 [TBL] [Abstract][Full Text] [Related]
14. Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule. Jiang G; Wang J; Yang Y; Zhang G; Liu Y; Lin H; Zhang G; Li Y; Fan X Biosens Bioelectron; 2016 Nov; 85():62-67. PubMed ID: 27155117 [TBL] [Abstract][Full Text] [Related]
15. Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission-silica nanospheres. Kong RM; Zhang X; Ding L; Yang D; Qu F Anal Bioanal Chem; 2017 Sep; 409(24):5757-5765. PubMed ID: 28741111 [TBL] [Abstract][Full Text] [Related]
16. In vitro action of human and porcine alpha-amylases on cyclomalto-oligosaccharides. Kondo H; Nakatani H; Hiromi K Carbohydr Res; 1990 Sep; 204():207-13. PubMed ID: 2279246 [TBL] [Abstract][Full Text] [Related]
17. Host-assisted guest self-assembly: enhancement of the dimerization of pyronines Y and B by gamma-cyclodextrin. Bordello J; Reija B; Al-Soufi W; Novo M Chemphyschem; 2009 Apr; 10(6):931-9. PubMed ID: 19294686 [TBL] [Abstract][Full Text] [Related]
18. Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study. Liang J; Kwok RT; Shi H; Tang BZ; Liu B ACS Appl Mater Interfaces; 2013 Sep; 5(17):8784-9. PubMed ID: 23957823 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence "Turn-On" Enzyme-Responsive Supra-Amphiphile Fabricated by Host-Guest Recognition between γ-Cyclodextrin and a Tetraphenylethylene-Sodium Glycyrrhetinate Conjugate. Hao Q; Kang Y; Xu JF; Zhang X Langmuir; 2021 May; 37(19):6062-6068. PubMed ID: 33961441 [TBL] [Abstract][Full Text] [Related]
20. First fluorescent sensor for curcumin in aqueous media based on acylhydrazone-bridged bis-tetraphenylethylene. Jiang S; Qiu J; Lin B; Guo H; Yang F Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117916. PubMed ID: 31839575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]