BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30506751)

  • 1. An in silico pharmacological approach toward the discovery of potent inhibitors to combat drug resistance HIV-1 protease variants.
    Nayak C; Chandra I; Singh SK
    J Cell Biochem; 2019 Jun; 120(6):9063-9081. PubMed ID: 30506751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir.
    Aoki M; Hayashi H; Yedidi RS; Martyr CD; Takamatsu Y; Aoki-Ogata H; Nakamura T; Nakata H; Das D; Yamagata Y; Ghosh AK; Mitsuya H
    J Virol; 2015 Nov; 90(5):2180-94. PubMed ID: 26581995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquired HIV-1 Protease Conformational Flexibility Associated with Lopinavir Failure May Shape the Outcome of Darunavir Therapy after Antiretroviral Therapy Switch.
    Eche S; Kumar A; Sonela N; Gordon ML
    Biomolecules; 2021 Mar; 11(4):. PubMed ID: 33805099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double trouble? Gag in conjunction with double insert in HIV protease contributes to reduced DRV susceptibility.
    Williams A; Basson A; Achilonu I; Dirr HW; Morris L; Sayed Y
    Biochem J; 2019 Jan; 476(2):375-384. PubMed ID: 30573649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GRL-079, a Novel HIV-1 Protease Inhibitor, Is Extremely Potent against Multidrug-Resistant HIV-1 Variants and Has a High Genetic Barrier against the Emergence of Resistant Variants.
    Delino NS; Aoki M; Hayashi H; Hattori SI; Chang SB; Takamatsu Y; Martyr CD; Das D; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2018 May; 62(5):. PubMed ID: 29463535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GRL-0519, a novel oxatricyclic ligand-containing nonpeptidic HIV-1 protease inhibitor (PI), potently suppresses replication of a wide spectrum of multi-PI-resistant HIV-1 variants in vitro.
    Amano M; Tojo Y; Salcedo-Gómez PM; Campbell JR; Das D; Aoki M; Xu CX; Rao KV; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2013 May; 57(5):2036-46. PubMed ID: 23403426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIV-1 protease with 10 lopinavir and darunavir resistance mutations exhibits altered inhibition, structural rearrangements and extreme dynamics.
    Wong-Sam A; Wang YF; Kneller DW; Kovalevsky AY; Ghosh AK; Harrison RW; Weber IT
    J Mol Graph Model; 2022 Dec; 117():108315. PubMed ID: 36108568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of ER stress response into HIV protease inhibitors: lopinavir but not darunavir induces potent ER stress response via ROS/JNK pathway.
    Taura M; Kariya R; Kudo E; Goto H; Iwawaki T; Amano M; Suico MA; Kai H; Mitsuya H; Okada S
    Free Radic Biol Med; 2013 Dec; 65():778-788. PubMed ID: 23973637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic study of multi-drug resistant HIV-1 protease lopinavir complex: mechanism of drug recognition and resistance.
    Liu Z; Yedidi RS; Wang Y; Dewdney TG; Reiter SJ; Brunzelle JS; Kovari IA; Kovari LC
    Biochem Biophys Res Commun; 2013 Jul; 437(2):199-204. PubMed ID: 23792096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis.
    Karnati KR; Wang Y
    J Mol Graph Model; 2019 Nov; 92():112-122. PubMed ID: 31351319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Darunavir (DRV)'s High Genetic Barrier to HIV-1 Resistance: A Key V32I Substitution in Protease Rarely Occurs, but Once It Occurs, It Predisposes HIV-1 To Develop DRV Resistance.
    Aoki M; Das D; Hayashi H; Aoki-Ogata H; Takamatsu Y; Ghosh AK; Mitsuya H
    mBio; 2018 Mar; 9(2):. PubMed ID: 29511083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir.
    Yu Y; Wang J; Shao Q; Shi J; Zhu W
    Sci Rep; 2015 May; 5():10517. PubMed ID: 26012849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of Novel HIV Protease Inhibitors Using Modern Computational Techniques.
    Okafor SN; Angsantikul P; Ahmed H
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Adaptation of Darunavir Analogues against Primary Mutations in HIV-1 Protease.
    Lockbaum GJ; Leidner F; Rusere LN; Henes M; Kosovrasti K; Nachum GS; Nalivaika EA; Ali A; Yilmaz NK; Schiffer CA
    ACS Infect Dis; 2019 Feb; 5(2):316-325. PubMed ID: 30543749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease.
    Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A
    BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring molecular mechanism of allosteric inhibitor to relieve drug resistance of multiple mutations in HIV-1 protease by enhanced conformational sampling.
    Chen J; Peng C; Wang J; Zhu W
    Proteins; 2018 Dec; 86(12):1294-1305. PubMed ID: 30260044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Highly Potent Human Immunodeficiency Virus Type-1 Protease Inhibitors against Lopinavir and Darunavir Resistant Viruses from Allophenylnorstatine-Based Peptidomimetics with P2 Tetrahydrofuranylglycine.
    Hidaka K; Kimura T; Sankaranarayanan R; Wang J; McDaniel KF; Kempf DJ; Kameoka M; Adachi M; Kuroki R; Nguyen JT; Hayashi Y; Kiso Y
    J Med Chem; 2018 Jun; 61(12):5138-5153. PubMed ID: 29852069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir.
    Hayashi H; Takamune N; Nirasawa T; Aoki M; Morishita Y; Das D; Koh Y; Ghosh AK; Misumi S; Mitsuya H
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12234-9. PubMed ID: 25092296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P1 and P1' para-fluoro phenyl groups show enhanced binding and favorable predicted pharmacological properties: structure-based virtual screening of extended lopinavir analogs against multi-drug resistant HIV-1 protease.
    Yedidi RS; Liu Z; Kovari IA; Woster PM; Kovari LC
    J Mol Graph Model; 2014 Feb; 47():18-24. PubMed ID: 24291501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease.
    Li N; Ainsworth RI; Ding B; Hou T; Wang W
    J Chem Inf Model; 2015 Jul; 55(7):1400-12. PubMed ID: 25993532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.