BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30506854)

  • 21. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods.
    Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals.
    Vighi M; Gramatica P; Consolaro F; Todeschini R
    Ecotoxicol Environ Saf; 2001 Jul; 49(3):206-20. PubMed ID: 11440473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationships between exposure and dose in aquatic toxicity tests for organic chemicals.
    Mackay D; McCarty LS; Arnot JA
    Environ Toxicol Chem; 2014 Sep; 33(9):2038-46. PubMed ID: 24889496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent, bioaccumulative, and toxic chemicals.
    Maeder V; Escher BI; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2004 Jul; 38(13):3659-66. PubMed ID: 15296318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The acute toxicity of major ion salts to Ceriodaphnia dubia. III. Mathematical models for mixture toxicity.
    Erickson RJ; Mount DR; Highland TL; Hockett JR; Hoff DJ; Jenson CT; Norberg-King TJ; Peterson KN
    Environ Toxicol Chem; 2018 Jan; 37(1):247-259. PubMed ID: 28833416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Norm Index-Based QSAR Model for Acute Toxicity of Pesticides Toward Rainbow Trout.
    Jia Q; Liu T; Yan F; Wang Q
    Environ Toxicol Chem; 2020 Feb; 39(2):352-358. PubMed ID: 31634980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of biotic ligand model-based freshwater aquatic life criteria for lead following us environmental protection agency guidelines.
    DeForest DK; Santore RC; Ryan AC; Church BG; Chowdhury MJ; Brix KV
    Environ Toxicol Chem; 2017 Nov; 36(11):2965-2973. PubMed ID: 28636272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applying adverse outcome pathways and species sensitivity-weighted distribution to predicted-no-effect concentration derivation and quantitative ecological risk assessment for bisphenol A and 4-nonylphenol in aquatic environments: A case study on Tianjin City, China.
    Wang Y; Na G; Zong H; Ma X; Yang X; Mu J; Wang L; Lin Z; Zhang Z; Wang J; Zhao J
    Environ Toxicol Chem; 2018 Feb; 37(2):551-562. PubMed ID: 28984376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach.
    Burden N; Maynard SK; Weltje L; Wheeler JR
    Regul Toxicol Pharmacol; 2016 Oct; 80():241-6. PubMed ID: 27235557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple linear regression models for predicting chronic aluminum toxicity to freshwater aquatic organisms and developing water quality guidelines.
    DeForest DK; Brix KV; Tear LM; Adams WJ
    Environ Toxicol Chem; 2018 Jan; 37(1):80-90. PubMed ID: 28833517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of algal interspecies correlation estimation models for chemical hazard assessment.
    Brill JL; Belanger SE; Chaney JG; Dyer SD; Raimondo S; Barron MG; Pittinger CA
    Environ Toxicol Chem; 2016 Sep; 35(9):2368-78. PubMed ID: 26792236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of classification models for predicting chronic toxicity of chemicals to Daphnia magna and Pseudokirchneriella subcapitata.
    Ding F; Wang Z; Yang X; Shi L; Liu J; Chen G
    SAR QSAR Environ Res; 2019 Jan; 30(1):39-50. PubMed ID: 30477347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Silico Acute Aquatic Hazard Assessment and Prioritization Using a Grouped Target Site Model: A Case Study of Organic Substances Reported in Permian Basin Hydraulic Fracturing Operations.
    Boone KS; Di Toro DM; Davis CW; Parkerton TF; Redman A
    Environ Toxicol Chem; 2024 May; 43(5):1161-1172. PubMed ID: 38415890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of critical body residue data for acute narcosis in aquatic organisms.
    McCarty LS; Arnot JA; Mackay D
    Environ Toxicol Chem; 2013 Oct; 32(10):2301-14. PubMed ID: 23720389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.
    Singh KP; Gupta S; Rai P
    Ecotoxicol Environ Saf; 2013 Sep; 95():221-33. PubMed ID: 23764236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxicity of seven priority hazardous and noxious substances (HNSs) to marine organisms: Current status, knowledge gaps and recommendations for future research.
    Rocha AC; Reis-Henriques MA; Galhano V; Ferreira M; Guimarães L
    Sci Total Environ; 2016 Jan; 542(Pt A):728-49. PubMed ID: 26546768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the integrated testing strategy for PNEC derivation under REACH.
    May M; Drost W; Germer S; Juffernholz T; Hahn S
    Regul Toxicol Pharmacol; 2016 Jul; 78():59-65. PubMed ID: 27103318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.
    Sanderson H; Thomsen M
    Toxicol Lett; 2009 Jun; 187(2):84-93. PubMed ID: 19429249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action.
    Lalone CA; Villeneuve DL; Burgoon LD; Russom CL; Helgen HW; Berninger JP; Tietge JE; Severson MN; Cavallin JE; Ankley GT
    Aquat Toxicol; 2013 Nov; 144-145():141-54. PubMed ID: 24177217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.