BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30507036)

  • 1. Separation of Spectroscopically Uniform Nanographenes.
    Yamato K; Sekiya R; Abe M; Haino T
    Chem Asian J; 2019 May; 14(10):1786-1791. PubMed ID: 30507036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots.
    Sekiya R; Uemura Y; Naito H; Naka K; Haino T
    Chemistry; 2016 Jun; 22(24):8198-206. PubMed ID: 27115715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Infrared-Emitting Nitrogen-Doped Nanographenes.
    Yamato K; Sekiya R; Suzuki K; Haino T
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9022-9026. PubMed ID: 31041841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of tunable photoluminescence from graphene quantum dots synthesized via pulsed laser ablation.
    Santiago SR; Lin TN; Yuan CT; Shen JL; Huang HY; Lin CA
    Phys Chem Chem Phys; 2016 Aug; 18(32):22599-605. PubMed ID: 27476476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe.
    Hwang E; Hwang HM; Shin Y; Yoon Y; Lee H; Yang J; Bak S; Lee H
    Sci Rep; 2016 Dec; 6():39448. PubMed ID: 27991584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Langmuir-Blodgett self-assembly of ultrathin graphene quantum dot films with modulated optical properties.
    Wang J; Yan H; Liu Z; Wang Z; Gao H; Zhang Z; Wang B; Xu N; Zhang S; Liu X; Zhang R; Wang X; Zhang G; Zhao L; Liu K; Sun X
    Nanoscale; 2018 Nov; 10(41):19612-19620. PubMed ID: 30325382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniform graphene quantum dots patterned from self-assembled silica nanodots.
    Lee J; Kim K; Park WI; Kim BH; Park JH; Kim TH; Bong S; Kim CH; Chae G; Jun M; Hwang Y; Jung YS; Jeon S
    Nano Lett; 2012 Dec; 12(12):6078-83. PubMed ID: 23148730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene quantum dots from a facile sono-Fenton reaction and its hybrid with a polythiophene graft copolymer toward photovoltaic application.
    Routh P; Das S; Shit A; Bairi P; Das P; Nandi AK
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12672-80. PubMed ID: 24245528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ Evidence of the Redox-State Dependence of Photoluminescence in Graphene Quantum Dots.
    Barrera J; Ibañez D; Heras A; Ruiz V; Colina A
    J Phys Chem Lett; 2017 Jan; 8(2):531-537. PubMed ID: 28067529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable Preparation of Graphene Quantum Dots for Metal Ion Sensing Application.
    Saud A; Saleem H; Munira N; Shahab AA; Rahman Siddiqui H; Zaidi SJ
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Solid-State Photoluminescence of Graphene Quantum Dots Embedded in Boron Oxynitride for AC-Electroluminescent Device.
    Park M; Yoon H; Lee J; Kim J; Lee J; Lee SE; Yoo S; Jeon S
    Adv Mater; 2018 Sep; 30(38):e1802951. PubMed ID: 30085381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Lateral Size of Graphene Quantum Dots on Their Properties and Application.
    Zhang F; Liu F; Wang C; Xin X; Liu J; Guo S; Zhang J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2104-10. PubMed ID: 26725374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape.
    Kim S; Hwang SW; Kim MK; Shin DY; Shin DH; Kim CO; Yang SB; Park JH; Hwang E; Choi SH; Ko G; Sim S; Sone C; Choi HJ; Bae S; Hong BH
    ACS Nano; 2012 Sep; 6(9):8203-8. PubMed ID: 22881035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Excitation Independent Highly Luminescent Graphene Quantum Dots through Perchloric Acid Oxidation.
    Maiti S; Kundu S; Roy CN; Das TK; Saha A
    Langmuir; 2017 Dec; 33(51):14634-14642. PubMed ID: 29172551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid state photoluminescence thermoplastic starch film containing graphene quantum dots.
    Javanbakht S; Namazi H
    Carbohydr Polym; 2017 Nov; 176():220-226. PubMed ID: 28927602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of luminescent graphene quantum dot-gold (GQD-Au) hybrid nanoparticles for functional applications.
    Wadhwa S; John AT; Mathur A; Khanuja M; Bhattacharya G; Roy SS; Ray SC
    MethodsX; 2020; 7():100963. PubMed ID: 32637335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Supramolecular Polymer Network of Graphene Quantum Dots.
    Uemura Y; Yamato K; Sekiya R; Haino T
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):4960-4964. PubMed ID: 29508495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-Down Fabrication of Luminescent Graphene Quantum Dots Using Self-Assembled Au Nanoparticles.
    Kang H; Kim DY; Cho J
    ACS Omega; 2023 Feb; 8(6):5885-5892. PubMed ID: 36816670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size Fractionation of Fluorescent Graphene Quantum Dots Using a Cross-Flow Membrane Filtration System.
    Yim SG; Kim YJ; Kang YE; Moon BK; Jung ES; Yang SY
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30469312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis.
    Zhuo S; Shao M; Lee ST
    ACS Nano; 2012 Feb; 6(2):1059-64. PubMed ID: 22221037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.