These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 30507178)
1. Multi-Objective Genetic Algorithm (MOGA) As a Feature Selecting Strategy in the Development of Ionic Liquids' Quantitative Toxicity-Toxicity Relationship Models. Barycki M; Sosnowska A; Jagiello K; Puzyn T J Chem Inf Model; 2018 Dec; 58(12):2467-2476. PubMed ID: 30507178 [TBL] [Abstract][Full Text] [Related]
2. Chemoinformatic Approach to Assess Toxicity of Ionic Liquids. Sosnowska A; Rybinska-Fryca A; Barycki M; Jagiello K; Puzyn T Methods Mol Biol; 2018; 1800():559-571. PubMed ID: 29934911 [TBL] [Abstract][Full Text] [Related]
3. Predictive QSAR modelling of algal toxicity of ionic liquids and its interspecies correlation with Daphnia toxicity. Roy K; Das RN; Popelier PL Environ Sci Pollut Res Int; 2015 May; 22(9):6634-41. PubMed ID: 25410313 [TBL] [Abstract][Full Text] [Related]
4. Interspecies quantitative structure-toxicity-toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus. Das RN; Roy K; Popelier PL Ecotoxicol Environ Saf; 2015 Dec; 122():497-520. PubMed ID: 26414597 [TBL] [Abstract][Full Text] [Related]
5. A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50) of ionic liquids. Luis P; Ortiz I; Aldaco R; Irabien A Ecotoxicol Environ Saf; 2007 Jul; 67(3):423-9. PubMed ID: 16889829 [TBL] [Abstract][Full Text] [Related]
6. How the structure of ionic liquid affects its toxicity to Vibrio fischeri? Grzonkowska M; Sosnowska A; Barycki M; Rybinska A; Puzyn T Chemosphere; 2016 Sep; 159():199-207. PubMed ID: 27295436 [TBL] [Abstract][Full Text] [Related]
7. Exploring simple, transparent, interpretable and predictive QSAR models for classification and quantitative prediction of rat toxicity of ionic liquids using OECD recommended guidelines. Das RN; Roy K; Popelier PL Chemosphere; 2015 Nov; 139():163-73. PubMed ID: 26117201 [TBL] [Abstract][Full Text] [Related]
8. [QSAR/QSPR for predicting the toxicity of imidazolium ionic liquids]. Zhao JH; Zhao YS; Zhang HZ; Zhang XP Huan Jing Ke Xue; 2013 May; 34(5):1882-6. PubMed ID: 23914543 [TBL] [Abstract][Full Text] [Related]
9. Quantitative structure-activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity. Roy K; Das RN; Popelier PL Chemosphere; 2014 Oct; 112():120-7. PubMed ID: 25048897 [TBL] [Abstract][Full Text] [Related]
10. Quantitative structure-activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids. Peric B; Sierra J; Martí E; Cruañas R; Garau MA Ecotoxicol Environ Saf; 2015 May; 115():257-62. PubMed ID: 25728357 [TBL] [Abstract][Full Text] [Related]
11. Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure-activity relationship method. Yan F; Shang Q; Xia S; Wang Q; Ma P J Hazard Mater; 2015 Apr; 286():410-5. PubMed ID: 25603290 [TBL] [Abstract][Full Text] [Related]
12. Predictive modeling studies for the ecotoxicity of ionic liquids towards the green algae Scenedesmus vacuolatus. Das RN; Roy K Chemosphere; 2014 Jun; 104():170-6. PubMed ID: 24296027 [TBL] [Abstract][Full Text] [Related]
13. A simple method for assessing chemical toxicity of ionic liquids on Vibrio fischeri through the structure of cations with specific anions. Jafari M; Keshavarz MH; Salek H Ecotoxicol Environ Saf; 2019 Oct; 182():109429. PubMed ID: 31323522 [TBL] [Abstract][Full Text] [Related]
14. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method. Zhao Y; Zhao J; Huang Y; Zhou Q; Zhang X; Zhang S J Hazard Mater; 2014 Aug; 278():320-9. PubMed ID: 24996150 [TBL] [Abstract][Full Text] [Related]
15. QSAR models for describing the toxicological effects of ILs against Staphylococcus aureus based on norm indexes. He W; Yan F; Jia Q; Xia S; Wang Q Chemosphere; 2018 Mar; 195():831-838. PubMed ID: 29289911 [TBL] [Abstract][Full Text] [Related]
16. Interpretation of toxicological activity of ionic liquids to acetylcholinesterase inhibition via in silico modelling. Cho CW; Yun YS Chemosphere; 2016 Sep; 159():178-183. PubMed ID: 27289204 [TBL] [Abstract][Full Text] [Related]
17. Application of general toxic effects of ionic liquids to predict toxicities of ionic liquids to Spodoptera frugiperda 9, Eisenia fetida, Caenorhabditis elegans, and Danio rerio. Cho CW; Yun YS Environ Pollut; 2019 Dec; 255(Pt 1):113185. PubMed ID: 31522005 [TBL] [Abstract][Full Text] [Related]
18. Predicting the Toxicity of Ionic Liquids toward Acetylcholinesterase Enzymes Using Novel QSAR Models. Zhu P; Kang X; Zhao Y; Latif U; Zhang H Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31052561 [TBL] [Abstract][Full Text] [Related]
19. Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic liquids. Cao L; Zhu P; Zhao Y; Zhao J J Hazard Mater; 2018 Jun; 352():17-26. PubMed ID: 29567407 [TBL] [Abstract][Full Text] [Related]
20. Assessing chemical toxicity of ionic liquids on Vibrio fischeri: Correlation with structure and composition. Montalbán MG; Hidalgo JM; Collado-González M; Díaz Baños FG; Víllora G Chemosphere; 2016 Jul; 155():405-414. PubMed ID: 27139120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]