These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30507185)

  • 1. Tuning Stacking Interactions between Asp-Arg Salt Bridges and Heterocyclic Drug Fragments.
    Bootsma AN; Wheeler SE
    J Chem Inf Model; 2019 Jan; 59(1):149-158. PubMed ID: 30507185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stacking Interactions of Heterocyclic Drug Fragments with Protein Amide Backbones.
    Bootsma AN; Wheeler SE
    ChemMedChem; 2018 Apr; 13(8):835-841. PubMed ID: 29451739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chains.
    Bootsma AN; Doney AC; Wheeler SE
    J Am Chem Soc; 2019 Jul; 141(28):11027-11035. PubMed ID: 31267750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt bridge interactions: stability of the ionic and neutral complexes in the gas phase, in solution, and in proteins.
    Barril X; Alemán C; Orozco M; Luque FJ
    Proteins; 1998 Jul; 32(1):67-79. PubMed ID: 9672043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Converting SMILES to Stacking Interaction Energies.
    Bootsma AN; Wheeler SE
    J Chem Inf Model; 2019 Aug; 59(8):3413-3421. PubMed ID: 31310532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stacking Interactions between 9-Methyladenine and Heterocycles Commonly Found in Pharmaceuticals.
    An Y; Doney AC; Andrade RB; Wheeler SE
    J Chem Inf Model; 2016 May; 56(5):906-14. PubMed ID: 27074615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids.
    Kuo HT; Yang PA; Wang WR; Hsu HC; Wu CH; Ting YT; Weng MH; Kuo LH; Cheng RP
    Amino Acids; 2014 Aug; 46(8):1867-83. PubMed ID: 24744084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and thermodynamic studies on a salt-bridge triad in the NADP-binding domain of glutamate dehydrogenase from Thermotoga maritima: cooperativity and electrostatic contribution to stability.
    Lebbink JH; Consalvi V; Chiaraluce R; Berndt KD; Ladenstein R
    Biochemistry; 2002 Dec; 41(52):15524-35. PubMed ID: 12501181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding substituent effects in noncovalent interactions involving aromatic rings.
    Wheeler SE
    Acc Chem Res; 2013 Apr; 46(4):1029-38. PubMed ID: 22725832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9.
    Luisi DL; Snow CD; Lin JJ; Hendsch ZS; Tidor B; Raleigh DP
    Biochemistry; 2003 Jun; 42(23):7050-60. PubMed ID: 12795600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteroaromatic π-stacking energy landscapes.
    Huber RG; Margreiter MA; Fuchs JE; von Grafenstein S; Tautermann CS; Liedl KR; Fox T
    J Chem Inf Model; 2014 May; 54(5):1371-9. PubMed ID: 24773380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive experimental study of N-heterocyclic π-stacking interactions of neutral and cationic pyridines.
    Li P; Zhao C; Smith MD; Shimizu KD
    J Org Chem; 2013 Jun; 78(11):5303-13. PubMed ID: 23675885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant strength of charged DNA-protein π-π interactions: a preliminary study of cytosine.
    Wells RA; Kellie JL; Wetmore SD
    J Phys Chem B; 2013 Sep; 117(36):10462-74. PubMed ID: 23991905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength and co-operativity of contributions of surface salt bridges to protein stability.
    Horovitz A; Serrano L; Avron B; Bycroft M; Fersht AR
    J Mol Biol; 1990 Dec; 216(4):1031-44. PubMed ID: 2266554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative helix stabilization by complex Arg-Glu salt bridges.
    Olson CA; Spek EJ; Shi Z; Vologodskii A; Kallenbach NR
    Proteins; 2001 Aug; 44(2):123-32. PubMed ID: 11391775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges.
    Albeck S; Unger R; Schreiber G
    J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Like-Charge Guanidinium Pairing between Ligand and Receptor: An Unusual Interaction for Drug Discovery and Design?
    Yang Y; Xu Z; Zhang Z; Yang Z; Liu Y; Wang J; Cai T; Li S; Chen K; Shi J; Zhu W
    J Phys Chem B; 2015 Sep; 119(36):11988-97. PubMed ID: 26287988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The [Lys(-2)-Arg(-1)-des(17-21)]-endothelin-1 peptide retains the specific Arg(-1)-Asp8 salt bridge but reveals discrepancies between NMR data and molecular dynamics simulations.
    Kaas Q; Aumelas A; Kubo S; Chino N; Kobayashi Y; Chiche L
    Biochemistry; 2002 Sep; 41(37):11099-108. PubMed ID: 12220174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-bridge energetics in halophilic proteins.
    Nayek A; Sen Gupta PS; Banerjee S; Mondal B; Bandyopadhyay AK
    PLoS One; 2014; 9(4):e93862. PubMed ID: 24743799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.