These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30507185)

  • 21. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin.
    Kuo HT; Liu SL; Chiu WC; Fang CJ; Chang HC; Wang WR; Yang PA; Li JH; Huang SJ; Huang SL; Cheng RP
    Amino Acids; 2015 May; 47(5):885-98. PubMed ID: 25646959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salt bridge stability in monomeric proteins.
    Kumar S; Nussinov R
    J Mol Biol; 1999 Nov; 293(5):1241-55. PubMed ID: 10547298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying the π-Stacking Interactions in Nitroarene Binding Sites of Proteins.
    An Y; Bloom JW; Wheeler SE
    J Phys Chem B; 2015 Nov; 119(45):14441-50. PubMed ID: 26491883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A survey of aspartate-phenylalanine and glutamate-phenylalanine interactions in the protein data bank: searching for anion-π pairs.
    Philip V; Harris J; Adams R; Nguyen D; Spiers J; Baudry J; Howell EE; Hinde RJ
    Biochemistry; 2011 Apr; 50(14):2939-50. PubMed ID: 21366334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations.
    Hobza P; Sponer J
    J Am Chem Soc; 2002 Oct; 124(39):11802-8. PubMed ID: 12296748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward a more complete understanding of noncovalent interactions involving aromatic rings.
    Wheeler SE; Bloom JW
    J Phys Chem A; 2014 Aug; 118(32):6133-47. PubMed ID: 24937084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unusual arginine formations in protein function and assembly: rings, strings, and stacks.
    Neves MA; Yeager M; Abagyan R
    J Phys Chem B; 2012 Jun; 116(23):7006-13. PubMed ID: 22497303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stacking and spreading interaction in N-heteroaromatic systems.
    Mishra BK; Arey JS; Sathyamurthy N
    J Phys Chem A; 2010 Sep; 114(36):9606-16. PubMed ID: 20166747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermostability of salt bridges versus hydrophobic interactions in proteins probed by statistical potentials.
    Folch B; Rooman M; Dehouck Y
    J Chem Inf Model; 2008 Jan; 48(1):119-27. PubMed ID: 18161956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.
    Yuwen T; Xue Y; Skrynnikov NR
    Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noncovalent interactions involving histidine: the effect of charge on pi-pi stacking and T-shaped interactions with the DNA nucleobases.
    Churchill CD; Wetmore SD
    J Phys Chem B; 2009 Dec; 113(49):16046-58. PubMed ID: 19904910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex salt bridges in proteins: statistical analysis of structure and function.
    Musafia B; Buchner V; Arad D
    J Mol Biol; 1995 Dec; 254(4):761-70. PubMed ID: 7500348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic Interactions as Mediators in the Allosteric Activation of Protein Kinase A RIα.
    P Barros E; Malmstrom RD; Nourbakhsh K; Del Rio JC; Kornev AP; Taylor SS; Amaro RE
    Biochemistry; 2017 Mar; 56(10):1536-1545. PubMed ID: 28221775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the strength of salt bridges: a comparison of current biomolecular force fields.
    Debiec KT; Gronenborn AM; Chong LT
    J Phys Chem B; 2014 Jun; 118(24):6561-9. PubMed ID: 24702709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of a synthetic arginine receptor. Systematic tuning of noncovalent interactions.
    Rensing S; Arendt M; Springer A; Grawe T; Schrader T
    J Org Chem; 2001 Aug; 66(17):5814-21. PubMed ID: 11511257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do salt bridges stabilize proteins? A continuum electrostatic analysis.
    Hendsch ZS; Tidor B
    Protein Sci; 1994 Feb; 3(2):211-26. PubMed ID: 8003958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Salt Bridge in Aqueous Solution: Strong Structural Motifs but Weak Enthalpic Effect.
    Pylaeva S; Brehm M; Sebastiani D
    Sci Rep; 2018 Sep; 8(1):13626. PubMed ID: 30206276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The binding affinity of uncharged aromatic solutes for negatively charged resins is enhanced by cations via cation-π interactions: The case of sodium ion and arginine.
    Hirano A; Iwashita K; Ura T; Sakuraba S; Shiraki K; Arakawa T; Kameda T
    J Chromatogr A; 2019 Jun; 1595():97-107. PubMed ID: 30833023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.