These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30507197)

  • 1. An Extended Computational Study of Criegee Intermediate-Alcohol Reactions.
    Watson NAI; Black JA; Stonelake TM; Knowles PJ; Beames JM
    J Phys Chem A; 2019 Jan; 123(1):218-229. PubMed ID: 30507197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unimolecular Decomposition Rate of the Criegee Intermediate (CH3)2COO Measured Directly with UV Absorption Spectroscopy.
    Smith MC; Chao W; Takahashi K; Boering KA; Lin JJ
    J Phys Chem A; 2016 Jul; 120(27):4789-98. PubMed ID: 26985985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.
    Huang HL; Chao W; Lin JJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and computational studies of Criegee intermediate reactions with NH
    Chhantyal-Pun R; Shannon RJ; Tew DP; Caravan RL; Duchi M; Wong C; Ingham A; Feldman C; McGillen MR; Khan MAH; Antonov IO; Rotavera B; Ramasesha K; Osborn DL; Taatjes CA; Percival CJ; Shallcross DE; Orr-Ewing AJ
    Phys Chem Chem Phys; 2019 Jul; 21(26):14042-14052. PubMed ID: 30652179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions.
    Newland MJ; Rickard AR; Alam MS; Vereecken L; Muñoz A; Ródenas M; Bloss WJ
    Phys Chem Chem Phys; 2015 Feb; 17(6):4076-88. PubMed ID: 25562069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy.
    Chhantyal-Pun R; Davey A; Shallcross DE; Percival CJ; Orr-Ewing AJ
    Phys Chem Chem Phys; 2015 Feb; 17(5):3617-26. PubMed ID: 25553776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions.
    Berndt T; Kaethner R; Voigtländer J; Stratmann F; Pfeifle M; Reichle P; Sipilä M; Kulmala M; Olzmann M
    Phys Chem Chem Phys; 2015 Aug; 17(30):19862-73. PubMed ID: 26159709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.
    Nguyen TB; Tyndall GS; Crounse JD; Teng AP; Bates KH; Schwantes RH; Coggon MM; Zhang L; Feiner P; Milller DO; Skog KM; Rivera-Rios JC; Dorris M; Olson KF; Koss A; Wild RJ; Brown SS; Goldstein AH; de Gouw JA; Brune WH; Keutsch FN; Seinfeld JH; Wennberg PO
    Phys Chem Chem Phys; 2016 Apr; 18(15):10241-54. PubMed ID: 27021601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unimolecular reaction of acetone oxide and its reaction with water in the atmosphere.
    Long B; Bao JL; Truhlar DG
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6135-6140. PubMed ID: 29844185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the Reactions between the Criegee Intermediate CH
    Tadayon SV; Foreman ES; Murray C
    J Phys Chem A; 2018 Jan; 122(1):258-268. PubMed ID: 29286244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substituent Effect in the Reactions between Criegee Intermediates and 3-Aminopropanol.
    Kuo MT; Yang JN; Lin JJ; Takahashi K
    J Phys Chem A; 2021 Aug; 125(30):6580-6590. PubMed ID: 34314585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2020 Jun; 22(24):13756-13763. PubMed ID: 32538397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH
    Chhantyal-Pun R; Welz O; Savee JD; Eskola AJ; Lee EP; Blacker L; Hill HR; Ashcroft M; Khan MA; Lloyd-Jones GC; Evans L; Rotavera B; Huang H; Osborn DL; Mok DK; Dyke JM; Shallcross DE; Percival CJ; Orr-Ewing AJ; Taatjes CA
    J Phys Chem A; 2017 Jan; 121(1):4-15. PubMed ID: 27755879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water.
    Long B; Bao JL; Truhlar DG
    J Am Chem Soc; 2016 Nov; 138(43):14409-14422. PubMed ID: 27682870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation.
    Kaipara R; Rajakumar B
    J Phys Chem A; 2018 Nov; 122(43):8433-8445. PubMed ID: 30281306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends in stabilisation of Criegee intermediates from alkene ozonolysis.
    Newland MJ; Nelson BS; Muñoz A; Ródenas M; Vera T; Tárrega J; Rickard AR
    Phys Chem Chem Phys; 2020 Jun; 22(24):13698-13706. PubMed ID: 32525165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.
    Jalan A; Allen JW; Green WH
    Phys Chem Chem Phys; 2013 Oct; 15(39):16841-52. PubMed ID: 23958859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The addition of methanol to Criegee intermediates.
    Aroeira GJR; Abbott AS; Elliott SN; Turney JM; Schaefer HF
    Phys Chem Chem Phys; 2019 Aug; 21(32):17760-17771. PubMed ID: 31368461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling.
    Drozd GT; Kurtén T; Donahue NM; Lester MI
    J Phys Chem A; 2017 Aug; 121(32):6036-6045. PubMed ID: 28692269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.