These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 30507936)

  • 1. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci.
    Liu L; Shi G; Thirumalai D; Hyeon C
    PLoS Comput Biol; 2018 Dec; 14(12):e1006617. PubMed ID: 30507936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interphase human chromosome exhibits out of equilibrium glassy dynamics.
    Shi G; Liu L; Hyeon C; Thirumalai D
    Nat Commun; 2018 Aug; 9(1):3161. PubMed ID: 30089831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mini review: form and function in the human interphase chromosome.
    Chevret E; Volpi EV; Sheer D
    Cytogenet Cell Genet; 2000; 90(1-2):13-21. PubMed ID: 11060439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes.
    Benedetti F; Dorier J; Burnier Y; Stasiak A
    Nucleic Acids Res; 2014 Mar; 42(5):2848-55. PubMed ID: 24366878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology, structures, and energy landscapes of human chromosomes.
    Zhang B; Wolynes PG
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6062-7. PubMed ID: 25918364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural-functional model of the mitotic chromosome.
    Polyakov VY; Zatsepina OV; Kireev II; Prusov AN; Fais DI; Sheval EV; Koblyakova YV; Golyshev SA; Chentsov YS
    Biochemistry (Mosc); 2006 Jan; 71(1):1-9. PubMed ID: 16457612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental condensation inhibition in constitutive and facultative heterochromatin of mammalian chromosomes.
    Haaf T; Schmid M
    Cytogenet Cell Genet; 2000; 91(1-4):113-23. PubMed ID: 11173842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale 3D chromatin reconstruction from chromosomal contacts.
    Zhang Y; Liu W; Lin Y; Ng YK; Li S
    BMC Genomics; 2019 Apr; 20(Suppl 2):186. PubMed ID: 30967119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reorganization of chromosome architecture in replicative cellular senescence.
    Criscione SW; De Cecco M; Siranosian B; Zhang Y; Kreiling JA; Sedivy JM; Neretti N
    Sci Adv; 2016 Feb; 2(2):e1500882. PubMed ID: 26989773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants.
    Shi G; Thirumalai D
    Nat Commun; 2023 Mar; 14(1):1150. PubMed ID: 36854665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial relationship between transcription sites and chromosome territories.
    Verschure PJ; van Der Kraan I; Manders EM; van Driel R
    J Cell Biol; 1999 Oct; 147(1):13-24. PubMed ID: 10508851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial organization of chromatin domains and compartments in single chromosomes.
    Wang S; Su JH; Beliveau BJ; Bintu B; Moffitt JR; Wu CT; Zhuang X
    Science; 2016 Aug; 353(6299):598-602. PubMed ID: 27445307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription-induced active forces suppress chromatin motion.
    Shin S; Shi G; Cho HW; Thirumalai D
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2307309121. PubMed ID: 38489381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the 3D structure and dynamics of chromosomes and proteins in a common contact matrix framework.
    Lindsay RJ; Pham B; Shen T; McCord RP
    Nucleic Acids Res; 2018 Sep; 46(16):8143-8152. PubMed ID: 29992238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells.
    Müller I; Boyle S; Singer RH; Bickmore WA; Chubb JR
    PLoS One; 2010 Jul; 5(7):e11560. PubMed ID: 20644634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentalization of interphase chromosomes observed in simulation and experiment.
    Münkel C; Eils R; Dietzel S; Zink D; Mehring C; Wedemann G; Cremer T; Langowski J
    J Mol Biol; 1999 Jan; 285(3):1053-65. PubMed ID: 9887267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing long-range interconnected hubs in human chromatin interaction data using graph theory.
    Boulos RE; Arneodo A; Jensen P; Audit B
    Phys Rev Lett; 2013 Sep; 111(11):118102. PubMed ID: 24074120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.