These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30507950)

  • 21. Exploring the metabolic variation between domesticated and wild tetraploid wheat genotypes in response to corn leaf aphid infestation.
    Chandrasekhar K; Shavit R; Distelfeld A; Christensen SA; Tzin V
    Plant Signal Behav; 2018; 13(6):e1486148. PubMed ID: 29944455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of Diuraphis noxia and Rhopalosiphum padi (Hemiptera: Aphididae) on primary physiology of four near-isogenic wheat lines.
    Macedo TB; Peterson RK; Weaver DK; Ni X
    J Econ Entomol; 2009 Feb; 102(1):412-21. PubMed ID: 19253663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salivary Protein Cyclin-Dependent Kinase-like from Grain Aphid
    Zhang Y; Liu X; Sun Y; Liu Y; Zhang Y; Ding T; Chen J
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observation on the initial inoculum source and dissemination of Entomophthorales-caused epizootics in populations of cereal aphids.
    Chun C; Mingguang F
    Sci China C Life Sci; 2004 Feb; 47(1):38-43. PubMed ID: 15382675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tillage impacts cereal-aphid (Homoptera: Aphididae) infestations in spring small grains.
    Hesler LS; Berg RK
    J Econ Entomol; 2003 Dec; 96(6):1792-7. PubMed ID: 14977117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva.
    Ma R; Chen JL; Cheng DF; Sun JR
    J Agric Food Chem; 2010 Feb; 58(4):2410-8. PubMed ID: 20112908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effects of wheat leaf surface waxes on the feeding of two wheat aphid species].
    Liu Y; Chen JL; Cheng DF
    Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1785-8. PubMed ID: 17974245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Species composition of aphid vectors (Hemiptera: Aphididae) of barley yellow dwarf virus and cereal yellow dwarf virus in Alabama and western Florida.
    Hadi BA; Flanders KL; Bowen KI; Murphy JF; Halbert SE
    J Econ Entomol; 2011 Aug; 104(4):1167-73. PubMed ID: 21882679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resistance to Russian wheat aphid biotype 2 in CIMMYT synthetic hexaploid wheat lines.
    Sotelo P; Starkey S; Voothuluru P; Wilde GE; Smith CM
    J Econ Entomol; 2009 Jun; 102(3):1255-61. PubMed ID: 19610446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutenin and gliadin contents of flour derived from wheat infested with different aphid species.
    Basky Z; Fónagy A
    Pest Manag Sci; 2003 Apr; 59(4):426-30. PubMed ID: 12701703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing growth patterns among field populations of cereal aphids reveals factors limiting their maximum abundance.
    Honek A; Jarosik V; Dixon AF
    Bull Entomol Res; 2006 Jun; 96(3):269-77. PubMed ID: 16768815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seasonal dynamics of cereal aphids on Russian wheat aphid (Homoptera: Aphididae) susceptible and resistant wheats.
    Schotzko DJ; Bosque-Pérez NA
    J Econ Entomol; 2000 Jun; 93(3):975-81. PubMed ID: 10902358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals.
    Niemeyer HM
    J Agric Food Chem; 2009 Mar; 57(5):1677-96. PubMed ID: 19199602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-Wide Comparative Analysis of the Cytochrome P450 Monooxygenase Family in 19 Aphid Species and Their Expression Analysis in 4 Cereal Crop Aphids.
    Wang Z; Hao W; Wang H; Deng P; Li T; Wang C; Zhao J; Chen C; Ji W; Liu X
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing.
    Aqueel MA; Collins CM; Raza AB; Ahmad S; Tariq M; Leather SR
    Insect Sci; 2014 Feb; 21(1):74-82. PubMed ID: 23956127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Landing Preference and Reproduction of Rhopalosiphum padi (Hemiptera: Aphididae) in the Laboratory on Three Maize, Potato, and Wheat Cultivars.
    Schröder ML; Glinwood R; Ignell R; Krüger K
    J Insect Sci; 2015; 15(1):. PubMed ID: 26022628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat.
    Migui SM; Lamb RJ
    Bull Entomol Res; 2004 Feb; 94(1):35-46. PubMed ID: 14972048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facultative endosymbionts modulate the aphid reproductive performance on wheat cultivars differing in contents of benzoxazinoids.
    Gonzalez-Gonzalez A; Cabrera N; Rubio-Meléndez ME; Sepúlveda DA; Ceballos R; Fernández N; Francis F; Figueroa CC; Ramirez CC
    Pest Manag Sci; 2024 Apr; 80(4):1949-1956. PubMed ID: 38088471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Triticum monococcum lines with distinct metabolic phenotypes and phloem-based partial resistance to the bird cherry-oat aphid Rhopalosiphum padi.
    Greenslade AF; Ward JL; Martin JL; Corol DI; Clark SJ; Smart LE; Aradottir GI
    Ann Appl Biol; 2016 May; 168(3):435-449. PubMed ID: 27570248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterisation of bird cherry-oat aphid (
    Singh B; Simon A; Halsey K; Kurup S; Clark S; Aradottir GI
    Ann Appl Biol; 2020 Sep; 177(2):184-194. PubMed ID: 32981942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.