These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30508131)

  • 1. MCNP APPROACHES FOR DOSE RATES MODELING IN LABORATORY FOR NEUTRON ACTIVATION ANALYSIS AND GAMMA SPECTROMETRY AT OSTRAVA.
    Uhlář R; Alexa P
    Radiat Prot Dosimetry; 2019 Nov; 185(1):116-123. PubMed ID: 30508131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutron and photon shielding benchmark calculations by MCNP on the LR-0 experimental facility.
    Hordósy G
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):32-4. PubMed ID: 16604591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron and Photon Dose Rates in a D-T Neutron Generator Facility: MCNP Simulations and Experiments.
    Xu X; Yi C; Wanyue T; Yuanming S; Jingbin L; Yumin L; Long Z; Jiaxi L; Xiaoyi L
    Health Phys; 2020 Jun; 118(6):600-608. PubMed ID: 31972689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation with MCNP of capture photon flux in VVER-1000 experimental reactor.
    Töre C; Ortego P
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):35-7. PubMed ID: 16604592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.
    Gonçalves IF; Salgado J; Falcão A; Margaça FM; Carvalho FG
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):562-5. PubMed ID: 16604699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of Harshaw neutron thermoluminescence dosemeters in terms of the revised ICRP/ICRU recommendations.
    Veinot KG; Hertel NE
    Radiat Prot Dosimetry; 2005; 113(4):442-8. PubMed ID: 15788417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GEANT4 calculations of neutron dose in radiation protection using a homogeneous phantom and a Chinese hybrid male phantom.
    Geng C; Tang X; Guan F; Johns J; Vasudevan L; Gong C; Shu D; Chen D
    Radiat Prot Dosimetry; 2016 Mar; 168(4):433-40. PubMed ID: 26156875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of neutron fluence to organ dose conversion coefficients in the ORNL analytical adult phantom.
    Miri Hakimabad H; Rafat Motavalli L; Karimi Shahri K
    J Radiol Prot; 2009 Mar; 29(1):51-60. PubMed ID: 19225185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.
    Choe DO; Shelkey BN; Wilde JL; Walk HA; Slaughter DM
    Health Phys; 2003 Mar; 84(3):317-21. PubMed ID: 12645766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ORGAN AND EFFECTIVE DOSE COEFFICIENTS FOR CRANIAL AND CAUDAL IRRADIATION GEOMETRIES: NEUTRONS.
    Veinot KG; Eckerman KF; Hertel NE; Hiller MM
    Radiat Prot Dosimetry; 2017 Jun; 175(1):26-30. PubMed ID: 27574318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of neutron organ and effective dose coefficients for PIMAL stylized phantom in bent postures in standard irradiation geometries.
    Bales K; Dewji S; Sanchez E
    Radiat Environ Biophys; 2018 Nov; 57(4):375-393. PubMed ID: 30167867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.
    Sowers D; Liu Y; Mostafaei F; Blake S; Nie LH
    Health Phys; 2015 Dec; 109(6):566-72. PubMed ID: 26509624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EXPERIMENTAL EVALUATION OF NEUTRON SHIELDING MATERIALS.
    Campo X; Méndez R; Lacerda MAS; Garrido D; Embid M; Sanz J
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):382-385. PubMed ID: 29036700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron-fluence-to-dose conversion coefficients in an anthropomorphic phantom.
    Alghamdi AA; Ma A; Tzortzis M; Spyrou NM
    Radiat Prot Dosimetry; 2005; 115(1-4):606-11. PubMed ID: 16381792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of different dose scoring methods on organ-specific neutron dose calculations in proton therapy.
    Jarlskog CZ; Paganetti H
    Phys Med Biol; 2008 Sep; 53(17):4523-32. PubMed ID: 18677040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DOSE CONVERSION COEFFICIENTS FROM MONOENERGETIC NEUTRONS COMPUTED WITH THE MCNP6.2 CODE IN THE VIP-MAN PHANTOM.
    McHale SR; Walker ER
    Radiat Prot Dosimetry; 2021 Jan; 193(2):105-123. PubMed ID: 33822201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of neutron backscattering from concrete walls in the dense plasma focus laboratory of Bologna University.
    Frignani M; Mostacci D; Rocchi F; Sumini M
    Radiat Prot Dosimetry; 2005; 115(1-4):380-5. PubMed ID: 16381750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose conversion coefficients for neutron exposure to the lens of the human eye.
    Manger RP; Bellamy MB; Eckerman KF
    Radiat Prot Dosimetry; 2012 Mar; 148(4):507-13. PubMed ID: 21531748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.
    Kurosawa M
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):513-7. PubMed ID: 16604689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV.
    Olsher RH; McLean TD; Justus AL; Devine RT; Gadd MS
    Radiat Prot Dosimetry; 2010 Mar; 138(3):199-204. PubMed ID: 19887515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.