These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30508276)

  • 1. Differential Radial Capillary Action of Ligand Assay (DRaCALA).
    Seminara AB; Turdiev A; Turdiev H; Lee VT
    Curr Protoc Mol Biol; 2019 Apr; 126(1):e84. PubMed ID: 30508276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions.
    Roelofs KG; Wang J; Sintim HO; Lee VT
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15528-33. PubMed ID: 21876132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid assay for affinity and kinetics of molecular interactions with nucleic acids.
    Donaldson GP; Roelofs KG; Luo Y; Sintim HO; Lee VT
    Nucleic Acids Res; 2012 Apr; 40(7):e48. PubMed ID: 22210888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Radial Capillary Action of Ligand Assay (DRaCALA) for High-Throughput Detection of Protein-Metabolite Interactions in Bacteria.
    Orr MW; Lee VT
    Methods Mol Biol; 2017; 1535():25-41. PubMed ID: 27914071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the Binding Proteins of Small Ligands with the Differential Radial Capillary Action of Ligand Assay (DRaCALA).
    Schicketanz ML; Długosz P; Zhang YE
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33818559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mass spectrometry-based non-radioactive differential radial capillary action of ligand assay (DRaCALA) to assess ligand binding to proteins.
    Cimdins-Ahne A; Chernobrovkin A; Kim SK; Lee VT; Zubarev RA; Römling U
    J Mass Spectrom; 2022 Mar; 57(4):e4822. PubMed ID: 35362254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing RNA interactions with proteins by DRaCALA.
    Patel DK; Gebbie MP; Lee VT
    Methods Enzymol; 2014; 549():489-512. PubMed ID: 25432762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed Small-Molecule-Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis.
    Cai B; Krusemark CJ
    Angew Chem Int Ed Engl; 2022 Jan; 61(3):e202113515. PubMed ID: 34758183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening Chemoreceptor-Ligand Interactions by High-Throughput Thermal-Shift Assays.
    Ehrhardt MKG; Warring SL; Gerth ML
    Methods Mol Biol; 2018; 1729():281-290. PubMed ID: 29429098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possibilities of the method of step-by-step complication of ligand structure in studies of protein--nucleic acid interactions: mechanisms of functioning of some replication, repair, topoisomerization, and restriction enzymes.
    Bugreev DV; Nevinsky GA
    Biochemistry (Mosc); 1999 Mar; 64(3):237-49. PubMed ID: 10205294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions.
    Vickers TA; Crooke ST
    PLoS One; 2016; 11(8):e0161930. PubMed ID: 27571227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of nucleic acid-ligand interactions by capillary electrophoretic techniques: A review.
    Neaga IO; Bodoki E; Hambye S; Blankert B; Oprean R
    Talanta; 2016; 148():247-56. PubMed ID: 26653446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance based methods for measuring the kinetics and binding affinities of biomolecular interactions.
    Fisher RJ; Fivash M
    Curr Opin Biotechnol; 1994 Aug; 5(4):389-95. PubMed ID: 7765171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second-Harmonic Generation (SHG) for Conformational Measurements: Assay Development, Optimization, and Screening.
    Young TA; Moree B; Butko MT; Clancy B; Geck Do M; Gheyi T; Strelow J; Carrillo JJ; Salafsky J
    Methods Enzymol; 2018; 610():167-190. PubMed ID: 30390798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroScale Thermophoresis: A Rapid and Precise Method to Quantify Protein-Nucleic Acid Interactions in Solution.
    Mueller AM; Breitsprecher D; Duhr S; Baaske P; Schubert T; Längst G
    Methods Mol Biol; 2017; 1654():151-164. PubMed ID: 28986788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of macromolecular complexes.
    Brooijmans N; Sharp KA; Kuntz ID
    Proteins; 2002 Sep; 48(4):645-53. PubMed ID: 12211032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding to nucleic acids and proteins: Does selectivity increase with strength?
    Schneider HJ
    Eur J Med Chem; 2008 Nov; 43(11):2307-15. PubMed ID: 18403056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of small molecules that disrupt SSB-protein interactions using a high-throughput screen.
    Bernstein DA
    Methods Mol Biol; 2012; 922():183-91. PubMed ID: 22976187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.